Print side | Luk vindue

Afbildning af tomme celler i kurvediagram

Udskrevet fra: Dansk Regneark Forum
Kategori: Hjælp til regneark.
Forum navn: Generelt
Forum beskrivelse: Hjælp til generel daglig brug af programmet Excel
Web-adresse: https://forum.excel-regneark.dk/forum_posts.asp?TID=4127
Udskrevet den: 23.Nov.2024 kl. 06:16


Emne: Afbildning af tomme celler i kurvediagram
Besked fra: Skorpen
Emne: Afbildning af tomme celler i kurvediagram
Posteringsdato: 06.Jan.2020 kl. 10:32
Hej.

Jeg har et kurvediagram, som skal "gro" månedsvist - dvs. når jeg indfører data for en pågældende måned, skal diagrammet opdateres med disse nye tal. Tal trækkes fra anden fane i arket.
Det har jeg gjort ved at klargøre de enkelte måneder, som så aktiveres ved at indføre et 1-tal i kolonnen B i mit regneark. Med koden =HVIS((B9=1;(STATUS!B118/STATUS!B120);" ")

I mine celler fungerer det helt fint. Hvis jeg aktiverer en måned (fx januar) med et 1-tal i B-kolonnen, regner den min månedlige status ud for januar og indsætter tallet i den pågældende celle, og de andre (ikke-aktiverede) måneder forbliver med blanke celler.

Men i mit kurvediagram indsættes de ikke-aktiverede måneder med tallet 0, og så bliver mit diagram lidt mærkeligt at se på. Kurven skulle gerne stoppe ved den senest indtastede måned, og ikke knække ned i 0 for resten af året.

Jeg har sat diagrammet til at vise tomme celler som "Mellemrum".

Jeg bruger Excel til Mac, hvis det gør nogen forskel... :-)

Håber der er en derude der kan hjælpe med nogle kloge ord og råd :-)



Svar:
Besked fra: Skovgaard
Posteringsdato: 06.Jan.2020 kl. 11:11
Hej,

Du kan løse det ved at indtaste data i en tabel og så have din tabel som dataområde i dit diagram.
Se evt vedhæftede eksempel og skriv videre i tabellen.

uploads/2506/Kurve_Skovgaard.xlsx" rel="nofollow - uploads/2506/Kurve_Skovgaard.xlsx

/Skovgaard


Besked fra: Skorpen
Posteringsdato: 06.Jan.2020 kl. 13:21
Hej Skovgaard.

Tak for svar :-) Det løser desværre ikke helt mit problem. Har prøvet at indsætte et screenshot herunder. Jeg forstår ikke hvorfor månederne november + december i diagrammet angives med værdien 0 når de tilknyttede celler i tabellen er tomme. (Forsøgt tomme via den kode jeg skrev i min første henvendelse i tråden). Håber du kan se hvad jeg mener - ellers så skriv lige retur, så må jeg se om jeg kan dele det visuelt med dig på anden vis.
ic7JC9OvpKimyJMaUvFpyam7k4dmRk8c9PMgVlus0pm3Z5tObtw9qU5unNy5pycqzaXM/dwGjYtKW1f2hdONKeeM5LOTt+aPsxlcTdzX/ACeJW8Ib4vv4I/mOGbUZHxLNM3c2PmkMBfUCV4KWQJa4Svs8Ky6rI+ZEdn78lW5CTlNOcSctNyj4k0Rdmic/MM5xXO6xXbikvE8jzvvE15w5IIyW4pJJ0tbcunocNQt8xKtkrWV+BXUFvwcX7i/MOFGoWiwu4FNgvWLBgsCin6eSFmIXdh5yLjRcsX9S1mLt6xBFqSvqRzqenS4qUDy0KX7V1OWp69/NcVjisqVrxbmbSyvdigeFlx/6rQVY0lqiWSkjurfVbX/YD5QfhDzxqXNVvWfCvllV4ucyyrKvuylrv28o9OP1b/qFiXsa6n3L18+3rcetH62xv8N+yt0KgoqujfGLWxpZJRWVr5btPcTZeqXKvqNpM2yzbLqyOr27aYbVm/5UuNoOZWbWBt81b9rWu2ftjG23Z9e8D2pjqDurK6zz8Jf7q7I3RHS71FfdVO3M6CnU93Je7q+tnz54bdurvLdn/dI9oj3xu791yDR0PDPv195Y1wo6xxaP+s/dcOBB1oa7Jr2tFMby47CA7KDj7/Je2X24ciDnUe9jzcdMT8yNaj1KOlLVDLgpbhVkGrvC2lrfdY+LHOdp/2o8ftj+85YXyi9qTWyfJTpFPFpxSni06PdIg7Xp7JPNPfObfzwdnkszfPzTjXcz7i/MULIRfOdjG7Tl/0vXjikvelY5c9L7decb/S0u3WffRXt1+P9rj3tFz1uNp2zetae++03lPX/a+fuRF048JN9s0rt6bf6r2dcPvunVl35Hd5d5/dy7n3+n7B/dEHyx5iH5Y+Un9U9Vj/cf1v1r81y93lJ/uC+rqfxD150M/tf/G79PcvA8VPKU+rBo0GG545PzsxFDJ07fnM5wMvxC9GX5b8ofHH1ldWr478GfBn93Dy8MBryWvFm7Vvdd7ueef6rnMkZuTx+9z3ox9KP+p83PvJ81PX56TPg6Pzv+C/VH+1/tr+LeLbQ0WuQiHmSDjfRwEENTgjA4A3ewCgpABARWdi0szxGfq7oPG5/zuB/8Tjc/Z3uQPQhC5joxCrA4CDqFkEoLlRGxuD4gMA7OKitH9KmuHiPJ6LjE6T2I8KxVsDAPDtAHyVKBSj2xSKr+jcjtwDoCNvfHYfEw79omnCFxcel/a2OywD/6J/AEJOEKGKwZjKAAAACXBIWXMAABYlAAAWJQFJUiTwAAABn2lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTY2PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjE3NDg8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K76U0/QAAABxpRE9UAAAAAgAAAAAAAANqAAAAKAAAA2oAAANqAARu7LLlD/0AAEAASURBVHgB7F0HgBVF0q63JAVERE89wax3imBCMedIxgCIBBUBA0jOSYJZzAJG0NMzAILoLxkEQRTjmVlQMWe9U0kSdv/vq+qeN7uEQw9hgWqWNzPdPd3TNZWnuzozb15uvmSEf5KP/zk85uMsgxwc8rXMSvKRkUny4h12X/oqw1by8yQ/J6P10aQlNqPtoTicx2O83/snbAAch78iluMfSYbEkoNfpz/nPyAL5aGRYyqZJPybV85/Xf64/HX9w/Uv1z8pL5MUdG6VHOHc9W9AR+WpyVG3PwAHtz/c/nL7UxmC259rsT9zc+E4YlIJwhPjomaWmHThOdQwlPCMSU3Ygk4hK8Dt2XusYauv7aKPfCBkbCXeokfvP4AD0LE/hTIvCC+Hv+NflnKc/hQbsgwmy0qc/wAWhilZ8BhPJo93/puloizS4MzlTwCHyx+Xv6qCuP4BCERe6vqX619ZyeH6l+tfwIasgpVVJVz/THhmFjyuf6pE3YL078y86DiCtpQDpM/Lvm0gQD7mOWCmgw6Yl2AX9EQWTiQWuObITnPQTp6Wk7WkZ0mQ7aJeqBuq6Ndza877d/g7/jn9pZmL8x/nvy5/XP7S4Qm+4PqH61+uf6YFZFCdXf92+8PtL7c/3f52/8PG8b9kcsNSNfp04NnBIbp7eJ5N5vSB8ycPDwbnT3QfxToqz+NFbIxHnevFAtX8oPvh1arzKMmKRd6/w9/xz+kvuJud/yTsVFklrjhb0/mvyx+Xv65/BNUs8gjXvwCQCAzXP7PKtevfkJtEDLc/SCBuf7n96fY3+EGWJUTWoEf3f6yn/yc3dx5AaEyVuggBp04iFTiaocWswZlEyoNtIbDWjXegKPsy9MJ+ohcYHwvDzWwpVC2Qx4vYGs69/+xrAcgc/o5/Tn/Of5z/Qki4/IF8pGSlVDCJTdmJUxMUemE/Ln/tK6zrH8SNLILoWfYHhbyI2IRz17+MlhRGduryN6CQ81/Qh/Nflz8uf6PECMLDGKVe2I/rH1um/pHJnZ+LmfDBWVTghduFOpFUQU1cF8o0FUOQZaSDujjJxzobLmXjPfgwDj2FpbE68qm4QPpmcoBOmHlEpNP7vH+FmQIr/FBfYXL4B82NiGKuy4hQijvMVVjhxPHP6c/5j/Nflz8uf13/gHh0/YsqFG18AMP1T9e/gQhuf7j95fan29/uf6BkVBv6j/h/dKkapzmng/9R8TZvMsWuJQpfdfWgMtRSmPE4UjHJgBOzfzYSkyosyGQKX7nSbbJEa8cq3r/DXzHOcCiNK4pD+HH8c/pz/gM6cP7r8sflr+sfrn+5/un6t9sfbn+5/en2t/sfNrb/hcGxaajTlaO/sN31C0005Hmhxkpw9kRLnja+VjRjX7NDHp1OespWcXs+fpjDPAb/TcaIDG3e+yekHP6EQsAJYIZhjOOfAkVpE/BJkhJYodyQ5/Tn/EdRAcji/Nflj8tf1z9c/3L9kzLB9W/TMVWPAkDc/gA83P6ipuT2F6EQaMLtL7c/VWKuxf7O5MZd1RIbNJwkBwAQriUilAodkJdu6azlNjOJAolUp1nqFdLV4MwFOZI54xfTAzXxQTTXSJWvx/JjdihPDt6/w9/xz+nP+Y/z3yAzQAw2kdXlT1BvXP5CX1CVwfUPKFKuf2V1TNc/Xf92+8PtL0oHJLc/AQSzuekqc/vb/Q9GFxEtEseLooliyJr8PzrjiLCLipe2EjJMFbOyMGsoOKCyfYV+NCPk0lNFI4c3xiVsvM+WmmRrap/oSnU97z9CGwBy+CvSRYgQNxz/gBVg9YCF0otSF85xreiSkJWZkk5/BIjzH+e/5KXABNCJyx/yUQWH/ShfDfyE58i1Ypc/Bo0AEYWT8VXnvwFfSFPElyzSGE6R5+Kfyx+Cw+WPyx+XP0oJ4BMuf8ERXP4GOaHsUeHh9n+ABQ6bi/6lM44y0Iby8PYCi4O4w5aF/GoFLCeim3JA/2Se5KCefsFQDYo4wLtQFwfd6jH52sV8+qtCVHEcA+vQexCROzGAvX+Hv+Of0x85hvEM5z/Of13+uPx1/cP1L9c/Xf+myeD2h9tfbn+6/e3+h6Lgf9Hg2GqvcSlZAXeo5qq7J2vQReOWZXQJ0V+Uo2fxy5O5h1DGtnLwkvHpKd6fTC3SHNZEin16/1lYGGQMPPiN8LNvebHQ4e/45/Tn/Mf5Lzmhyx8TFC5/+XnK9Q/Xv1z/dP3b7Q+3v9z+jPaj29+EhFmNduSlQUeXcsbzaGKnarO+299Z/08S48iUb0wmRJR+A1AAcoQ1gEjlXGHLH9XUDcKrg9SUN+69Fsya0CZfWkzxBdq190/jx+Hv+Of05/yHDNr5rwp3lz8KBkpJl7+uf7j+BUJw/dP1b7c/zHAiOaxm0rr9RbvT7U+3v93/YNzBbKoN53+xGUeqnKNpnQ5qHcWvdomM1gWq5FX0HuGgS9b0wAv8Z0BGJL3BTvUye6q1NA/3W18g7Vhfl65xOqr3z5fs8AceADcc/0ArpDenP+M7zn+c/7r8UcGrq8Upel3+AgaufxATXP8CQShNKDRUVbWzbLbRDXVN1z9d/w744vaH239u/6r17fan29//zf+gM47UG5WPmQ4Zxhah44ZC1hw4JoPDOQp0UgwlMSshBfFrstpuRBlOQISa9NTuT25KnEXaAJrC93Xv3+Hv+BfozunP+Y/zX5ULQYiYjHD54/KXvBHJ9Q+lDNe/bGZBghM8cf3T9W+3P5Q/kE9m8OWR8jNhmm5/mRChDAFY3P50+9v9D7/P/5PhrmoxvBDpSF1HcOLQ8UP+omVBEEeZnOxwZawpGLvmpYvTA3mMrIpHUmhkX/GKAZHJ2Lx/gMFA4fAnnjj+Of05/3H+C57o8geyweWv8kPqEQSF6x/mUqW+xhQ1K34ldP0rq4cqvih80lDiucHM9U9TOl3/dv3b7Q/gAPiC279uf7n9uR7+n1w4jlSS8if1pYaZFLykpuig5mWStAIFj3WiVKc3hBp6E6ePMzO0xgOkFJcgxbbtJN6DCuFLQbjD+wcgHP4BFwOa6EERxPHP6c/5j/LMhGFGXgraQLw6578uf1z+BuLgwfUP179c/3T9m2JyNZmJDLc/CJksaAAStz/c/lB7XTEj/CjtuP21tdpfSYyjyEML4wMRJpofEW+yiyhYG4mCmDhkF8p81QeFjITpaMP6o7USJ1XIiiV6TOGj9+/wd/wrKLic/uyLe+Q4zn+c/7r8idQACQpguPwFGAAK1z+C7FDFSn9c/yIE4kfSAJIIGT26/pnYQ65/u/7t+rfr3+QDMbn94fYHYhzN5xQgztGLmqceVRFPpAbFKSZCY3ZRJgeZgZMkxRGjmMGqhRPyOL08h23ECkldnHj/Dn/HvyztgF6c/sgzwEiU1zj/cf7r8sflr+sfrn9BKLj+qZZsIh6jvs0M178jNLJHtz/c/nL70+1v9z9sMP+LxjiivNGkX2GCBR8FUChUmcS8IJzUqEN93R0t5PELXyzXz33I12VpId8O/GU1GgJwI6EOb9fk/QMYDn/VfgxNEuRQFAt4ROXI8Q8U4/Tn/IezS5Q4QCop+nD+C2AALi5/MBst4IUd+EvQuPx1/cP1L9c/ExVL9QnXP13/BiLoXxAUyYHmmRprLA4Kudt/rn+5/gm6AE1EPYvnW7r+rbuqkTNEnqDngAC36VShWnieIisUqK0ZBX7YlrFfchdE6zY1VZV4YzzIz0HDinF2q/efFeAa/NPh7/gHMknC1KxGYaStNSenP+c/zn8ppVz+uPx1/cP1LwuYTSey65/QGQgH17/d/nD7K1Gg3f50+zNaVG5//3f/T2Y+gmPb8rEItkBLKUpiSVIHzCYDa9aUcuTrLKFCO1nEmRC4L7aqMpttIqWaNjleIMfqpLO8f4e/41+gGqc/5z/Of13+BMnq8hd8EbPuuAg+2cnV9Q+biQlVyvUv0ydd/wQuuP6tyOD2R5YvFLCtgulVGEgF6rj+6fqn659bvf6ZmTd/PhxsZpbzKzVZSh4Vr0K7j6jgRWmW6cYzO1KBzcEyK6pvxpaYjxRvTO5EX8hjqCTWyIfS5/07/IkLjn8kGKc/5z/Of13+mJxUwx/MMYpR8knNS8lT5rj8df3D9S/XP13/dvvD7S9zdVGbTgRnSl66/en2t/sf/jf/S9hVjY4L25kHGij4DgiP/Jcqalwro7QYNVg7mjLLgsCstY7dJnm81xwizCbdan3LxiUy2L4evH+Hv+Mfyc7pDwzB+Y/zX5c/Jh9d/gY4BN6oSoQpE65/UIOi0HD9S3VJlZ+GLq5/Ahiuf0crw+0PY5mqWnHmmdtfAILbn25/Kxq4/+H3+h9CjCP7Ykl7jXBk0llAOTl6VDaTj3Od62pAzqFQoubGO0yDM5uXLAkNsSRJqKsxk5KMwifeP78YO/wd/5z+jDc4/wEfdf7r8ocfcihTXf66/uH6l9ECtEvXP13/dvvD7S+3P93+dv8D+AD+dM7PRvK/mOOITiB8tMqB54I+IHsAGnCJGcvHgeLGwpiP8yQxkwuNwpcvnGkpsvOQHT+a2s3WgfqcUEvref8Of8c/pz/nP85/TTyYXHD5EyQs5LLLX9c/XP9y/dP1b/BEAkEth8Af3f5w+8vtT7e/3f8Q+aJyxz/R/wLH0TxMdgnLhKi05yFWAJhy4kDiE+ABeK3rAsO7SVh3imdzJ3ncHpg6Q1XGc6utv3aqJcb/7csJdSLe4P07/B3/nP6c/4AXglcqX8TR+a/LH5e/1A+CnmAHZOAk2Ayuf7j+5fon6EE1b9e/3f6IuGBGl/7aKQuMd/KjPZQLt78AD7c/3f52/8d6+X90xhHn/fCLJjmJrnUjU9FrlmTL1HphEQkM1Wng52E6kdVhtjGhJPBUKLFlWMbGk5Z5yUa0TrYP75/QTKAUIUhg4S/AEAeHv+Of05/zH+e/Ln9c/lJ/cP3D9S/XP+kEcP1btWXwhGC9QFnW1RKqV1uZfZBx+8PtL+KI259u/5MXuP9jff0vOuMIdGMJcRTMIwEgIrh14qfg2npcELTct4KNhxtwiOd2pmXqEEJt5c6hKuvxcyEPKNJlcVrEeqGO9+/wV+QATjj+Of0FvqCx1Zz/OP+FmHD54/LX9Y9EYQJFxHM7c/0L8HD9E3jh+rfbH1neYIaX219uf7r97f6H/93/kpmXOz+fgWg1BT7DK3phVfjoOZRVOHXyc6CWUB7hX56aMTxHBh0+zMGBQbBTt4ZaKMaZtYly9hedUXAuef+EOJLDX8FAaDj+Of05/zG+oN/DnP+6/HH56/oHVSf8c/0ryxtd/3T92+0Pt7/c/qRZ7fa32tEmHtz/oBY1fzas/8VmHKUhrX3Y7CJOGOIOaTlw9IT3YD4fOn14TzjwFqbkEifwRqFGrIOM4CDKA2KzXf1Rh1W8i8eQwuwC79/h7/jn9Of8x/lvlA76zcHlDwRllK1RaLr8jZoEFRHXP1z/cv0z8ggQhOvf+oHa7Q+3v9z+pPpA3kCJGaUmjyG5/W1QIYgAJ7c/Vrc/NMZRxBc9AlAakwig47pgxa2kQkQyVVutLMwcoh7LxEOIX2nXuEWjUKiyTzQ1hUZbyjande0G79/hTxxx/HP6c/7j/DcrGrJKjssfylnFDZe/1O4MIQAT1z9c/3L9MyEHnaHn+jedJTQ23P5w+8vtTzrU3f4Gj3T/Q1ZQKHfEz/r6f+bNyyUlqcJFOHLSKx0X5pGMOpmVKNPBqelpqrpqdyxNX8FHh0qcOgkUZWFMoaLWDeem/Gbv9/4d/o5/IA4QMLm70RqJJUR3SfLSFJelH97k9Of8x/mvyx+Xv65/uP4VlU8cKUYhNl3/BCgCLOIxahOufxM2AI7rX0ovrn+SX5BYXP92+x+2FVDB/R+gidxcOI6YVILwxCSrCRIW0T+pK4jDGesEv7XdyYxsCm68KIiswNphH5z6xbLVkvcfQALo2J9C2eHv+Ed6YUyLLOU4/Sk0nP+sxkbjZxTiTBY8zn+Vqbr8cfnr+ofrX6tzTdd/Xf8OWOH6t9sfqi24/aUapNtfbn+tbn8iOHZwHIFb5MDpk5e1NtT0yKGnVRVuXsJcoye+cApuOJqzukW4ltO0S3tpiYBoPLrsWAeX9N5Z8v4d/o5/Tn+RH/BIfuL8x/kvPzgQHVz+uPxNFIYso3D9QxUp179c/3T9m4Hjmdz+cPvL7U/9xKx2ttvf7n/YcP6XTG5YqkYnDj3NWXbL82wyoAP5sE16HhS1qL7FOupPihexMR51XhcLVPOH7g/RpopekhWLvH+Hv+Mf6MTEndNfwk6UVeCKswWc/zj/dfnj8jeoJpFHuP4BgERguP6VVS5d/4TcJGK4/k0CcfvD7S+3P8EPsiwhsgY9uv3v9td62Z+5ufOAQiZUqIsRcdRJpAJXM7SYNTToIBHOFkJr3XgHcrPIqBf2E7+C6UzYRICFqoq8aQyOrSHP+8++FgDf4e/45/QHOnD+4/zX5Q/ko35LVKFLia0pilK7Clk2C8PlL8Dh+geBEPAigiMiDY+uf7n+6/q/2z/gBW5/GasM7NHtL7e/3P4KOgP070zu/FyshAjCQlUH+zE1grQTKCfrulClVakK1ESC0ro4ycc6G06l5z2YGAA9jaWxOvKpuAH6mRzz/OudvM/7D3BWcBnMwqnD3/HPqIy0pKwrEpRmM9fpD0AgH3H+4/zX5Y/LX9c/XP+CPHD9k9pBVBdc/3b7w+0vtz/BF93+1pmHajnRbnD/w+/2P+hSNU7zTgffpbOCX17SiV8s9UMvKsMthFIc6RjKwJhFWYHYC+owUnOW0hvNmDMptmk5lGjWg/fv8Hf8s2+dpAinP+c/kVcah6Rwc/7r8gd44PLX9Q/Xv1z/dP3b7Q+3v6Asu/3p9jfQgE6EmNz/AEhE54p5W9I2peWkqvwR/w+DY7NRM1f5AsxIYcd096jFosoqa6QSL2z+ezYz5EUTWFvFTz6cR2yLxQz+m7xjZLAJ718hZW8hwASQMYgpgCKEsqBWYDr8ARBiVUg8BUwc/4zWFKvw4/Tn/Mf5r8sfskeXv65/uP6V1Rdc/3T9O2rXqi+5/m1mXdSi3f5QgWEWWuAbPARbw06y/MTtD7e/tgb7M5Mbd1VLKCOcJAeAAa4lKhuqdIKh8KunTSTKIgmy+Rc8f2FJTUJfuBnT4zSlnB1k2ASy5eNXT5OO9VpreP8Of8c/pz+wBuUZzn+c/6qYcPkTlRSXv65/KEmoV8j1r6BMBvvO9U/Xv0kdSG5/AAhmc7n95fan299GC+a8UAZh9KHClDqF+z/W6P/RGUeEHQAVYBUYC68S6CWzFoIDGmWhNHuT5jGX33bpZNJzVWRwhmtbahCqWTHaBRvz/hWYWVAGgDj8gSWABQATZ804/gV6UerCeRZpAmE5/Tn/cf7r8scEbJzC7fLX9Q/Xv6hHBDFp5OH6J+Dh+jeQgTomDoYe/OVVyGFZWDXh+qfrn8GkNezIIg3whcn1b9e/t3z9W2ccZcAN80ANxjTpY8OWjYwiBimrjh0lDvqn8yQH9TS2kXJQEgrvQl0cdKtLnmueMd/YGo9BddNyROQ2gcUr79/h7/inVEPB4/Tn/GdL5b/ffvONvPf++1K6dGmpVu1wKVGihPN/l38u/1z+ufyDLuzy3/Uf1/9c/9tS9T/yN/oH3P7fvP0fGhxb5RWXkhX4HKO54TXznAw9OpfiNVEgx0oMH7S+5rCtHCAIPv3ShaQIA+UoIo4deWmlOpU2nrN6SKFZXHn/Dn/Hv0AtgR62bvp7YdZsmTljpjqga9aoKYfDEUF+8Uf5z6wXZsuMGTPQXkZq1kR7h1t7kX8VJfqbM+dFmTV7thQvVkLOrnG2HHRgZSLD/zT+hBcH3svDhuS/z40fL927d5MVK1ZqD2XKlJa77xoixx57LF4aeioC/H/OnDkyG3AtVqyY1KhRQw6sXDmRX0Xp/Zs83Lrp33DT9Q/VjAKh8vBH+V9RoD9lDKmfMCzkuP7n/Mf1P9f/InMgP3D55/a3y/9NIf+TGEfWOSYzI0q9CSiyKJBmOJBcuSxGdXv+6BoZ5q5JpJvywr3XwmsNbZLUYzKyz16h13zv3+Hv+Le50N+SJUtkPJwBv/z6CyjdVJqcnBwpU7as7LfP3lL1kEOlOJ3HKLMxbVj679ihg4yfMEFZSLNmzaRPnz56zl7Id34v/+nYoZNMmDBeeV6zps3RXu8iy//aXtVGpk6ZglGKtGrdSrp07qJj588fHf+fzX/PqV9PPvjgA+G7WrZsqYwaNVpOO+00GTp0KJ65aPD/tlddKVOmTlVB1xpw7dylswEUcHX5p2CxH5f/KXoz7hYziir9kQtnE8+NZzOvqNCf6z+u/xg1BcMjHIijzn+d/7r9SWYNonD5S5agSWVXAVn2x/T/P1v/3ZLkr804UuYMdo0v7XwJZNzxq1WCo7pAnu8JCofqHKiLo04i0pfGJWosJlLbqV5mT5Nsu499wbSL9ZHp/Tv8Hf82H/p77J+PyYCBA0DhykCylE6mAHreeeedpTecOWeddZaWRbawoei/Q/sOMmEiHUcZOCOamOMo8pPwNGRVMf23/jt27Jg4opo3ayq9e/fNyugixv/aXnWVTIHjiKl168ukc+eONsz/Yfx/Nv+tcfbZsnDhQunSpassXbpUhgy5Ww455BAZOXKk4suf3f9/e//sv03bNoDrVMXoVq1bS6fOnU1HK2Lvn4LX6IivnSNz+asEUITxf33wz+Xf5iP/nP7AeRSpnf84/3X54/IHEHD5a+qYIgPAEY48bEnyX2ccqYc/H186MlxbSsHNQZoAt8GGcxTopCBCIUCE9fhlX+vZjSjDiUkUrZeBd5R9JDdF5Ar1vX/Az+Hv+LeZ0R9nitx5xx3KClLUTe5gKWTecfttWE5VE3mBaWwg+u+AGUcTMeOIrTbHLJbevTHjSPtcO//56aefdKYLH7BRw0ZSfofyyptIfx06hhlHKGtGx1GfvsbXUMN4FEbASZG8OQxlU/G/tm3bypTJU/RZWsLB0QUODn2m/zJ+Pnoi3DkG1N9Y/Peuu+6Uu+8eoo/AfvnRbOCgQdIA76Go8L+r1HFkDjk6jhSugFBRe//6rvX1ufx1/cP1r4QnF2H+lwiNDST/yEg3lfxx/hPFmPNf57/Of53/gh8EfXpr8H9kuKtaDC/BcavrCEaUftEENmhZcARFmZzsMGC8U4UXFev08pDITCIsTcSxliUVeHQuoYL3DzAYKBz+xCbHv82C/oYExxEpukKFCnLvPcNk0ZKlMmvmDBk+4iEjdPxWqlRJpk2bDlLfsPTfPjiO2BGXP/XF0jLynciHlF+hzHgOOU6+DBo4SP75z0elZIniMn3mTNlpx50S/tO+YweZNH6i1mN7vfv2KbL876q26RlHrTAzpksy7nWN32Bh3JgbImCwyfg3Bv+f+9LLCI79HmIz5Ui16tXloMoHbdT+/9v42wGuk6dMJkpJq8taS9dOncGPABnAivfy1OWfutGIOpqMsrJ0V5Tx77+9f9d/XP66/uH6v9s/4ANglm7/Uea7/Hf9x/W/AvpvLhxHQf8zrTjMFGKmKlk4iR9Ikno80QqoEYx8u07V0Js4fVG7syPvASfirmyxbTsJ9wUC5ZX37/CPOOL4F3AhkIkeigD9DRs2TG6/43Y8TkYq7rabTH9+evKEPXv0kjFjn0qu586dK6+/9rrMenGWbLPNtnIVZsxwqdu06dN0h60BAwbI7nAwUUAxrQ/9d8DSMo1JhP6bNW0qfeDoSRKQ5ptvv5Lnnhsv8+fnyieffApnUUn511tvyvLlK6Rhw4bqRErznw7t22Pp20RtoikcRzURHPmJx5+QTz/7VJ1fRx55pDRo0ECKFy9egP/lzp+PmU8TBU54+fnn/8i+++4rhx5ymJxzbj3JySmWjGba1GnJ+Nu3aycL5i/A0rjx8vbbb8suu+wiR8GR0uiCCwACmuL2zrm5wNhxT8srgN+nn34q+++/v5x33nly/30PyNSpjHGUj6VqraUzHBxxLODpeJ5JeJ738Ty/4Hn2kUMPxfPUP0dyitMwXDf/nTZtmrwwa5aU3nZbaXdVO/kgd56Mf+45effdd6V8+fJyNpac1a9XX9/VRDz/M88+Kz/9+JPsh2erU6e2HHXUUYAP3iPi5YVRyIIFHyqM3vvgPfkRdcuWKSt/3XVXOe300zTOkQI98P/C/c//cIFMQCytLJyOkkaNMEsJ8bTS8icX73ki3t+8efPk5/9g3PvtbeM+p769BwI1yB96gJ4e+7TMfSUF13PPlfsfeCC1BNDg6vwnQS19Tfau8Etadfkf4EB4ZMFTGP+1MIV/WjUSebzN9R+DJeCRgAYnTn8FUUvRRQHk9Of8x5x8WYIJzKSQ/HX+Q1oBbNz+/K/6HzHI+W/guS5/1ih/kxhHEVH0mJJHVHCi+k+EYrKZAyxhbR5giAS61DwaPiiKwexY0zAx9sJrVgg3ZQ9WjdeBH/Je7z8gMeGI5PC3L96GVASI418kJYXJRqK/oUOHyB133IkXkJFKFXeDE2i6Yifp+pFHHpVrsAwpJjpNBt9yMxw95pg55uij5aWXX1Zbi1zh7iFD5IzTT/9d9N+hAxw92l4GS9W4tIyOI+MrY+EUuAazixYtXhQfocDxpBNP1D7pTOJD8BkYbHsCg23jumyZ7XDvr8bDwlPS3XLKqaeos6xUyVLa10MPPSSDB98qK1cs1za0EzItNFjt8GoyZNhQ2QHOFl536BifV6Rpkyby+BNPSN6qVdn7cFut2rXl1ltvUf63Am1279YNziXCLM7ywGa9mK3D/hkniImOIy6p4hj0eW4ZLCvgHCucqmHXuaFDh6nzZ138tyNmXk0Yb3BoemETeQzOs7y8VRg9HVrsRaRFixbyzTdfIzg66qVKGBx9MPqvWbNWwv8fuP9+wGiw3lf4h6CqV7++3HDjjWglvIdU/82aNNX+V61amepFpDbgdAv60QT6f/jhh+Rm9LFiBcYdG7JSqVatmgwdMhTLErdHTgaOw+XSrWtXdRKmq3IntRIlS2rgbg4zwtXlj4E0gFNxgLhgb4sH57+bgv86/I0XOf45/Tn9RW4AmthI+l/s0enP6c/pL1LDVkJ/ubnzYQtgsEnwT9MHFRGoG6rWTAGNCejw5mSwS1L05CTFKNWU0iVjlh5xO6f35+hiCraFlNTFiffv8Hf8i5xHj5sD/Q2DE8JmHIlUrFjRZhwF8r7hhhtkxIgRSuolipeQNzHTp1sXOkGwaxlTmv5hig6Fg+W0U0+zMrSxPuNfbVc1zjjCvW+++aZcgJk7MVWqWEn2xuyT2TNnq9Gr+ej/isuvkA4dEFQ68B8Ntk3HEZI+XvKMSY4WDOw/EDODGslrr74qTTDTKaZqR1ST35b9pjNzYl7z5s2ld6/eyv86Yde2tY0/Cw+R0dht7OCDq8qTo0Zi+V3f0FR4GBy4oUB0HvOoM47gOHr1tVfhkEo9Dxwmv/0Wnifc16w5Y0H1DgNk0ygoxH8Jh4kIOo5uFJ72AOEitJPu38qtKcJ/9913l8mTJ2OWD4la5NIWl8rsObP1uXeDg5FB0z/59BP590//Tm4aibEecvAhWn99+39q9Gg5qGpVfQ9N+R7CI9JRlIxbW8RSRoy7L4Od4x+DcfftB7jiWZObCozVcrlUrXNHzuRiRZd/Lv9d/3H9D4wieJLJMgo4lQvxEHIXTWAfrv+6/u/2Dxcxq9BNxK6eFNI/WGV99D+nP+c/zn+NlFTObET5ozGO2J8mEjAC9KpGHehblXHk6DMxLzycGRX4Cg4KjwaG6tfx4XmBc10WEe6zA39ZREUcbAR1eIsm7x/AcPg7/oFGjEwS4lCyMgIy8ISMTUl/wzBL6M4771Qa3m23ivL8tOmyYuUKmY5jt+5dZRmcFhxH1SoHy+inRgljCE3UGSocVkaXdLVtd5V8/dVXOoNk57/85XfhP5eWTcLSJPKQpk3pGIDjCOcNGzSUt95+S89r1aotN91wI2b3PC7XXHtNAlf2X7p0aZn76itSgkvPkDqivfETJ+HMgF/j7BrSvUd3LHP7RNq2aYMZSIu1XpUqVTGe0dIIy9a4fIr9N29mDiL2/9Top6RX717af3E6zV5/Q0qWKrna+E844QTh+D9F+10xAwa3oucMzrtIy0tbIqA4diH7ZKE+zm5//asMG3YPyvPl2muvk1fx3Ey8pyUdHFiq1gjjfhvj5tM3p4MIMZ/If8eknodjfeONNzBjaZu18l+byWUONHZwysmnYMnaVTJz5gvJ0sQIo8aNG0vjJhfKiOEjZOyYMWEMIs9j2SKdROx/xIPD5cOPPoTzprkceMDf+diyeNESXfL23fff6XX//v2lMZ194H+F+z/xhBO1/4ULAaduXVHfINWlSxdp1aqVNGyE9/0vvG+ki9BHLzjq6Ox5agzeQ0+co34JxLR6XcddQvv9ZOGnCstdAdd77wFcIXuuu+YaeQXLKePYWrcCXLvAcaQtIJeAta71nTNjU9Kf9+/wd/xz/ZPyh0zf9e8sf1ZgAC5uf0DTCXLLDvylGHP7y+1Pt7/JO8k+Nbn/AcBYP/+D7qpGoAXeYvADp9Gv2gRqAZeeFheqHfOyR7Zl3fOVYLc2Y1PKxE3xRn4OGlaJZ/d5/1kE1uCrgI0itcM/C5gExdLYkmQmJ45/G4f+hiE49u3YVS2mHXaoIL/88rOswvIrUr7SPRjBI4/+U47EMqn27RGTCDNZ+EJ3+suO8sy4Z2THHXfU29NvdH3xf7UZR1iqthjOncMPP1z7zyC+0IwZ02WHCjvKmVgG9/U338iJWKL20pyXZcWq5cr0Ro0ahdk9Byv/Sy9VO6r6UTICy5+KkZNhMHSQDYGjjIkxjl5//XU57NBDJU+9CSLjxo3TOEgsX7xkiZx68smychWJN1+eQ3ye/RFnKD3+I46sps6WklgaxdT4wgvlDbTJ1Pzi5tL+qvbCGUz6YMjjUq86depo+ZIlixGjqZF8uGCBFnPGEXdZO+SQQ8Fj2acAtuOkYqXdcZaH51kanmeVlo1/boLsu//eaJtvyVIa/u2xpG4igoRz3EccfoQ8BDiUKFECy9XyNH7RL7/8ojc1hONsEJwtTN99952cAAdPfOAnsQzv0MMOx/Xa+X/bNtkA35dfcYUuFWRbhfsf8dAIiXC6EHAi7JkuvugiBAXvjHEfgnHbCMYhHlRFxMrCW9Nxn3zyicBHhkwXjXe1y667YOnaERgb6uMvwpV3L8V7Y+yrBYipxDLOOOqiM45QWCCxdhZ2BYpwwVL2T/xf1/jXBv/1xX80vsbk/Tv8Hf+c/pz/OP91+bN2/cPlb1aHSWs0rn+Ac7r9vU7/Q2Y+gmPb9MEsEqk2msIkliR1ANAMvEkmlJCvXrrsjipaF3n6JQz3xVbVCcI2kVJNa3nSthXbb6qS9+/wT3DE8a/I0N9QOI7uCI4jo9E0AQtiyuwgPbp3l3POOUeZUEcsgdIYQqjGpUV9+9p298m7Td++HvTfIcYkwn2McdQLy7o+eP997Y9N7Yblc88j7tJoLGni7BvOMmL/XTC757133lE+NBTOIAZoJqdKt9cMM5hisG2ObdbsWXIpZgGxHly68o9HHtGd3JChaU3jj2VcsnfMccdiRlN2/Ny1rQ8cXZG3de3aTZ555hm9hc4L9l+nbl1cG6ed+cJMBNDeFZfGf9ukdlXjtvH169ZBfCRzLMV+CxxTDzgcz3Pcscdqcew/y6kRiynsVseemwGuffGc8R3VrlVHPvxwvsJu4MCB6mgBQsJRki8HYoc0Og2ZHn30UTkCwcTZPtMrWEb39Jix8t57CI7900/y688/64y0+FiXXXaZdOrUSeuuq/+uWO747LPjtH+FE+BIh1psRxtY0w8qcFbUTjvtVKD+rBdekJ132Rl32JPSATdlyhS9atX6MuncuVNoOyCk858iw3/4ml3/AF4G+qN7VOnA9S+AhFw6UrWyTZt5QZxJ5RvfSOegkCmVVaCO07/Tv9s/IA+Tl85/wSic/6r+5/Jn65G/mXnz58PBaGYBv1JR1PIreqZQ9HnIS1NKtAbrRclqRzKQHExzyk9WfTOf1cKNqfqcPspQSayRD6Lz/h3+xAXHPxLM5kN/DLQcHUfFMAvnqCOry7alt0GMmz1kr7320h22GGTadIx8jScUHUfNYfAzmPX/Qv+MTxTb4y5o/fr0lZkvzMDypdYEpPzt7/vLuLHPSI2aNXS5WQ3sknb77bdhV7IG8t675ji6F4GbT8YsJOJfJ3VEYekbzps1R7BtLH0Dm1JGNefll+SSiy/mFVIGs4/ukjZt2tpl+KXYMEpOMqQYZj3xGffcc491jr9nz5661Ittn9+wgdSrVwfxipol7b/62mtSbrvt9Nn4TG3btoGDY6qWc8bRcccdhxk4F6/Wv96QtCJSDIG1x2M20d577alFa4J/OwQdZ4wjVlAHF+AQ2TidWfNz56PFfKHjqBGWifGZyf8PrnqwLEdAb6ZHH31EuAsdb7zv/vsQyPoWzY8/HAPhTKULNwsdR53VcZSRdfXfQ+E0Vu+m46h27VpYlncRW8JTrA5/68TGzUDq3333rS5rjP2/itlL5cqW1WrkP23hkJsMxxGtTOIRg46zMI6fz8x77eljKzZ+l38u/13/iVOklbqzhKMUZvTi+p/rv67/mwRZk/x1+8vtT7e/oUlD6VJdy/WvIqd/hl3VaO7gJalcx1viia54wDGuVYtlqkHbmzRlmgVBWdA6uNQs/ED5pvrAy0T5tmxchhI9eP8Of8e/zY3+GNDadlXLLxgcey30zxhHk4JDoilmsvSBo8fYwB+j/w7cfSvsOKYOjr59NNYNY96Q05YpUxpBkPtJT8x6IpsZ+/TTUrnygXLi8SfIt1haxfTc/z2HbeT3RXlGdDexEBy7SeMm0q/f1Qn/s3g5vfQexgl67rnxcuZZZ+Kag7WAyzvuhGV3ga1JnjG6snD2lN8eu3khf13j79mzl4wZO0bbp0PkkosugcOrprbNHsY8PVYqH3igjot89YrLr7Rg5Oi/deuWunTt9DNOT/of+cQo2XGnCvo4umwF/ZNflyuH5ym3PfLDg+qhIPw7dOyosagIk2bNmth70mHmS9269eA4ytW7B8BxdEEjxCUK/L9K1Sq2mxvqPvoPLE+sfoT8BzOLjq5eXetzcHUxM+q8c8/Ds+0oN954k8yaNYvZ6jjqhNk9dCKtq/+ePXrJWMCJj004tcasoNN1xhgy0O/IJ0dq2xH+rMfxly27nZQrv70sXPix1ETsKuYzjcUsqMoHHYhr4z9XXHG5TJ/+PEEMxxGcWV0QPJ0Nh/GbBEchgOnyj2AhYFz+Z3HE0CWNf4QQEU7xhajEc8VAXODc9CSXf5ub/HP6d/p3/uf83+Wfy/+tTf6HGEf2xZSCm3oMk84Cwq44PKqak49zajyq8vCLCVQfSk7eYRKUOj/USOSjIZYkCXVtJ6Akp9CJ988v9g5/xSbFDcc/0FERp78hQ7IzjhhXZtrUaeuk//ZhRg/fclyqZYzA6P/zzz+T4cOHq1OnxllnSZ369dfJfzRmUHD0MPAydy9b9OsvUv3oo3Wb+4TJgBmdhPg792F20YsvzsFW8pdoEeP2MFB0SWxtT/pLO462LbWN3Df8Qal+xBHY4n25NG7cVN55xwIw77HnnjJxwnNSteohydKsAQMGYPbNBX94/D169FCHCB+sARwidHYdrjN2IJTBVy+8sKlcfTUcbbiYNHkK4gG1Q9/kx9g2HjNj2mOWEGf8rMqzpWJ8nmRnud/Jf7lUbBLgSj7OpWp9sAtbfuD/dTHjKBeOI/KqAQPCjKPA/6scBMcRgqMzcakaZxzNmTNHLgG8KTpKliolb731Fu416dCyZUuZrY6jjHC5HZeFcUTr6r9nzx4yBs4eNtEAwcCvvrofxo33wNhOeIcD+veXRgjYbT3oo1CYJfKHMbC46xrfN1OTJuYg5PWUKZMRh6q9xnLi/S0xC6qLzoKirHP55/KfOANcAHa5/kOaIJUAJq7/qd1AluL6L/ACzHlt/BcIs4bk+r/r/27/UKcxrYQqC+ioiOv/zv+3XvlnjiMo1tS7c4C51AFMAJK/J2iMMxJ2xGzmE2gx8ZrfdYPnEWdaiuw8ZMdJS9aedaA6B2ppPe/f4e/4t9nRXzrGUUVseT99OpdOGV9YE/3bblkIuowUZxyl6f+O22+XYffeo2yiXLlyMnfuy2FLd1XHV+M/dDDEpWrNsKtZnz6cEQQnBHbaYuwapmjb0DHDGUg33zwYAbx/0bKWqNcVO3PRsUD+1wkzbcaHGVGsQMfSiSeeIN98863G5lH2B57Gfq9AMOd0/yVKlIRD6mI5DAGhGeeHgatnPD9DKiAI+NC7hypY1jX+Ht17ytNjx+rz0iFyzaBBmE3TGjuZzdRn5c9pp52qTq6J3EmOTDqk1q1bwenSFc/TLszAgpMGz97ikhZySLXDJG/FKg34PGPG8whGvpMwrtO6+G97xGKaGB1yWALIWEyR/9etY44jdm1L1RrhzPh/lSqV4WRbqU/1TzqOjjhS3sv9QM6pV1/z+MM4RtXhUHpy1Eid7aMFQAI6v7gsjM+1rv579ugJx1F2ZtYgwMngarvh8Z21aNFCDj/sMFm1cpXM/wjvYfoMnYU0dCiDm3OGVkG4nnraKYBXKZk8aRIkGMYSQGtwxVI13BPHb2WsgAdNko3f5Z/L/4gXih1AC9d/AJEELQLd0ChSALn+Z2Aw+eP6t9sfpAu3vyIXJb9gcvnr+of7H4qS/wWOo3mwQSDAKcHItPIQq4iEGhkY80G/vNZ1yUEJCCqAlkWfEXdyw+3WEFRw3moswGrrb3IjikKG9+/wd/wzUtmc6O+euKsaCL3iXxGIGjuYrYv+OeMoOiR0+3rMZFGnTeA/PTCbhEuHyDeKYfv0N15/U0phG/u18Z/0LmjNEA+ob78+2v9HH32ssXcW/forWlpz2m/f/eTJJ5+UstuV0S/nxD9d+jZ+gvZPfmfWDecXBFaFkwrYoY3OqnJYfvb1V19JrVq1ZMnSJVqBbZg/J94hcCQdJk888ThayGBW0NrH36sXHCJcqgae2AiOo4HXDILj7BWdHbVq5UpjlUn7gA+Wy+WF/NbY/aszdv/6+puvpGZNPA92UbMnxqFQOuxQPM+TT1juWvhvJ8SOGj+JMY7ijCOLcUT+X6ew4wi7u0X+X/XgKrJ8OWccZbCT3j/UQURHUk0sufvss88KPAlNRipDMWlwbM44AgKtq3862NJL+gYNHCRfYdy1atSSpcuWrAb/2D7fw+PY6Q0+QnnlVcAVTrU4OyrW4YtmTKo8OP74/lu1xIyjLlw+p6Bw+Uf8c/mvKo2SDhGHJ9B7+M3M9R/X/9Yl/xRnEsQJuMOPFkH+kf9sTvIfj+v47/Tv/M/5v8u/rUz+64yjrBKvfk3KryARWBIVfHBItaZQRAGHSzqY8vA5yeow24RgEvgulNg0TGs1aZmXamUV7INmmvefQClCkMBy+Dv+ETGKDP099ug/4eAYqI90AOLvjEMcHirBa6N/zlwZNWqU1r/iSszYwbIgDsb4R74GZObuYgywfOopp8iwYfckZWvCfwbDHjl6pLZn27m3T/p/6OGH5brrrsf9wT2h/EZkO8QcOu/88zHzpaOUKgmnVKr/uAwqBwGkH8CyNs5OmvfBPNSxNqpWqarBwCtWqpjwv8+/+lyuRz/TsHtbPrarZ1IHEo577rGXXIlx1qtXT2dLrWv811x7jfzjH//Q+1tc2kK6d+vGluSFmS8gSHcv+e7777WM29IzyPd5550vF2F5Hp+sXbt2cmWbNjrWL7/4Sq6/4Tp9njwsZUuPf8899sTzXCn1uARwHfy3L2JFjRpp7+nKK67UZXAR/hc2uVBeR0BpplsH3yo169RUCII7ydFHVZf//OdnzBLL4D2PloMAL/bPpW29evWSd999V+/jT6XdK0nLSy+V/v0H6P102l1++WWoncFue2vv/9prr8WOdganSy+5VLr26Kr3f/Hll3gP18r0ac+jDZ03pPyS/e++xx4IZN5G6mPcTHzWF7BLXW880/ff/6D3lyhZAnA9G7jRAMG2EZQclQjXtgiAbm8fGc5/FH4AWIL/Lv9d/zH+TW4FSlkH/zfkMfpbF/9x/Y+QIpfKyka9dv5jKOT8x/kvyMPtT7e/Xf/YNPqHzjiiIqgJcRyMI4EqEdw1kVP8TIsLijLum2Lf4HkHc+LNdqZl6hBCmWoHrMdEbk+3XOgCZbxb24hNeP8BOICMw9/xL9CFxhYpovS3dOkyWYmZL2WxM5VOtY8ETupeA/0vWrxIecF2YSerwvT/27Jl8uviX2SnCn9Zr/e/aNFidcqUKVNGOVHkP/Xq1ZV5cFjss+8+cuMNN8qyZb/BkbO77LLrLsbi1sB/8kFzv2IZW6ltS0qpEtto/x999JH89NMPst+++8sOFSqslf+tWLFCvvziC/nm2++k9LbbSiU4lyrsiGDZSTL+t67xL/qVM5fypWy5MqvR/+effSE//PijVEFw7xKIycS0FDOdVmI5Fp1hTESXOH7GZaIz5dtvv5XSpUvjeXaXCjuUX2/+u+iXxWD2DDAOuKb4fwY8/FfAvDhmPG277TahV/aOR8ZMnUWLl8g2iGVUEo6Y9PunSCB8vvr6SwRSrySVKsL5hnuWLVsqK1cZ/mBRf8L/1tY/5Q/7ZypbFnDSUeulni3HDKcvPv8c4/5GSuPZKyH2VgW8Nxv46vKHcbV+/OlHBE2vjOVqGA8edOlvgOvyVXgPAa6p8bv8c/nv+k+isK1Gf5H/kBOl6X9t9Gf1jH7T9O/6j+vfbn8EuebyB2zC7U/qS65/uP5RFPSPzLzc+fkWADurAxBB+a1Dhbqe80sSUDYHj0x9AP/CN12cIYMKP3NwYBDs1K1qHKAQicNlm/hPKyIyQxhw3j8hbqDhgVcOf8c/wwTigtPf7+E/H2PnrNq1amuQ41tvu01n6Dj/cf7r8sflr+sfrn+5/un6t9sfwAE6Y9z+cvuT9jgT1QMktz/d/v5v/gebcaQYE5BHMce8u5wwQMaSA8SKperzodOH94QDb2FKLnECbxRqxDrICAwqD8yK7eqPImy8i8eQgnfZ+3f4O/45/f0R/rNi1QrlP8WLFQevcf7j/BdyB/LG5Y/LX9c/oGepckWdy/UvACPAwfVPhYDr30YVNF9AJ39E/3D7x+0/t3/d/jdGsuXZHxrjKIhLO4BRakwijJhRvNW3k1SISkYQtXqJHwgalb2oRxHMSB88MtFm01V46myimmIMJd6aVLTquMH7d/gTRxz/nP6c/zj/jYKBR5UamkH5orChXHH5kwhcl7+uf7j+lZCD65+uf7v9AW1al5urBHX7iw4dtz/NNnf7W9XJ7I/7H9bP/zNvXi45ieIPiYmLzui4sC9SUSe3EnX64NT0dFXdFeAsTV/BR49KXLoGEmVhTKGi1g3npvxn7/f+Hf6OfyAOMDBKN6M1EktY3ZzkpSkuSz+8yenP+Y/zX5c/Ln9d/3D9KyqfOFKMQmy6/glQBFjEY9QmXP8mbAAc17+UXlz/JL8gsbj+7fY/bCuggvs/QBPY8YZUESQJT0yymiBhEf2zGsEonLFOmDdkdzIjm1RTsXuyxdYOpZWuqc3Wzp6pBOOl9x9AoFB2+Dv+Of05/2FMOaME8kjnvwqNrIAhUCy5/AEcXP6a/hKRwvUP1atc/3L9Ew4R0sZqyfXvABK3P9z+UG7p9hcgEHUJ1z9d/85KDsACOw8F9RvzFKB05xVQxvPhZ4WnVRUO4BCOXD6zWgpuOJozukWiViCg015adovGQ91QRb131p737/B3/HP6S3MX5z/Of13+uPzlByfwBdc/XP9y/TMtIIPqDL0aBOL6t9sfbn9x4yYmtz/d/nb/g35iVvGwYf0vmdywVI0+HXqas+TG82wypw86x5bVeXD+RPdRrKPyPF7ExnjUeV0sUM0Puh9YmzqPkqxY5P07/B3/QCfG7pz+EnairAJX/Frq/Mf5r8sfl79BNYk8wvUPACQCw/WvrHLp+ifkJhHD9W8SiNsfbn+5/Ql+kGUJkTXo0e1/t7/Wy/7MzZ0HFDKhQl2MiKNOIhW4mqHFrKFBF4lwthBa68Y7kJtFRr2wn/gVRGfCJgIsVFXkTWNwbA153n/2tQD4Dn/HP6c/0IHzH+e/Ln8gH/VbkgpdSmxNUZTaVciyr/AufwEO1z8IhIAXERwRaXh0/cv1X9f/3f4BL3D7y1hlYI9uf7n95fZX0Bmgf2dy5+diJnwQFqo62I+pEaSdQDlZ14UqrUpVoCYSlNbFST7W2XApG+/BxADoaSyN1ZFPxQ3Qz+SY51/v5H3ef4CzgstgFk4d/o5/RmWkJWVdkaA0m7lOfwAC+YjzH+e/Ln9c/rr+4foX5IHrn9QOorrg+rfbH25/uf0Jvuj2t848VMuJdoP7H363/0GXqnGadzr4FZ0V/PKSTvxiqR96URluIZTiSMdQBsYsygrEPlKHkZqzlN5oxpxJsU3LoUSzHrx/h7/jn33rJEU4/Tn/ibzSOCSFm/Nflz/AA5e/rn+4/uX6p+vfbn+4/QVl2e1Pt7+BBnQixOT+B0AiOlfM25K2KS0nVeWP+H8YHJuNmrnKF2BGCjumu0ctFlVWWSOVeGHz37OZIS+awNoqfvLhPGJbLGbw3+QdI4NNeP8KKXsLASaAjEFMARQhlAW1AtPhD4AQq0LiKWDi+Ge0pliFH6c/5z/Of13+kD26/HX9w/WvrL7g+qfr31G7Vn3J9W8z66IW7faHCgyz0ALf4CHYGnaS5Sduf7j9tTXYn5ncuKtaQhnhJDkADHAtUdlQpRMMhV89bSJRFkmQzb/g+QtLahL6ws2YHqcp5ewgwyaQLR+/epp0rNdaw/t3+Dv+Of2BNSjPcP7j/FfFhMufqKS4/HX9Q0lCvUKufwVlMth3rn+6/k3qQHL7A0Awm8vtL7c/3f42WjDnhTIIow8VptQp3P+xRv+Pzjgi7ACoAKvAWHiVQC+ZtRAc0CgLpdmbNI+5/LZLJ5OeqyKDM1zbUoNQzYrRLtiY96/AzIIyAMThDywBLACYOGvG8S/Qi1IXzrNIEwjL6c/5j/Nflz8mYOMUbpe/rn+4/kU9IohJIw/XPwEP17+BDNQxcTD04C+vQg7LwqoJ1z9d/wwmrWFHFmmAL0yuf7v+veXr3zrjKANumAdqMKZJHxu2bGQUMUhZdewocdA/nSc5qKexjZSDklB4F+rioFtd8lzzjPnG1ngMqpuWIyK3CSxebUH9f/ft1/Lee+9LmTJl5fDDD5PiJYorNLeW8SvebMXv38e/ddO/v39//1uz/HP8d/x3/Kfuu3Xqv07/Tv9O/07/zv+2bP6vwbEh5WwpWYHPMZqr7h6CgJ5U86Vavl0TPXKsJHhezT2EumwrB04mfPqN9yefNoJQtWatVKfSbub9Pzf+OenevbusXLFC4VambFm568675Lhjj1X4FYXxz5nzosye/aIUK5YjNWrUkMoHHmQvlEsJN3P4E622ZvzbnMb/7bffSE5Ojvxlp523aPz75utvpBjH+ZedwCzJ6wKj1CMvtxz+tznhn70Hh7/jn9OfMmCX/1lerACxn8ityS9c/40flwkb+xTq+r/bP0oZgVBc/+b0iK3T/nX9z7TKreH9JzGOjPgxmRlR6k1ABiMn2joQFVwWo3YOf3SNTBSuhUWqEQ/3XgtsNbRJthJT4DThcmP2v3z5cpk4cYL8+ONP2ntZOHhOOPEE2XXnv651/P/+979l6uQpsmjJYtyTkbJly0jdunWlVKlSKkIpUuvXry8ffDBPmjZrKsuXLZWRo0bL6aedKkOGDiszxKQhAABAAElEQVQy42/btq1MmTJFx926dWvp3Lmznm9M+GuHgAjhGJP3DxrK3/zob9y4cfLjTz/iTabf5Zrpf4/dK8npp58u/fv3l8cff1xf/ZVXXint27c3GtoMx89BKO6uYfz9+g+QJzFOYvoVV7aRDu3b6Zjtx/G/MP1/uvAzee/9d2TBhx/Jwo8XwrGYkQo7VpCDKh8kJ554ovxlx52KrPxZsniJPP/88/LGG2/IN99+K6W3KSV77LW3nAH+fyCe3yQk33lM+fLVV1/L3Llz5e2335YffvxBDjqwilQ9+CA5+phj4WwshoqoH+Tv4sWLZcb05+X1N9+Qb7/9TrZB+3vvtZecetppaP9AVFud/r5A+6/OfVneevsdtP8T4HigVK1aVY455hiFbWH4b478h9BcG/2tTf/45JNPMCv4XfkQePbxxx+rA3uHCjtIlcpV5cSTjpcdd/pLgGcW/uynKOg/1D+enz5D3njzdfkOeFZqm21kz732hJ5xulSuXJmPqfyGelcc/5fAg5fnviLvvP0WdJ4ftV7VqlWAB8fq2O2egvLnt2W/yWOP/VO+/+F7KV6suDRt2hT60S5rpL+30O7cl+cCnh/K0qVLpWKlSnLaKSfLEdWPKpL6nwJJoZSmmYLjN3oqeu9/S9C/Hf5GcVsr//X37+/fpJTzX6OFoMNsRvaPzTji+9OlY1yOZmpY9JolPiJdIB8QnvqvLlnTAy/wn1M0kfQGO9XL7Gmi2qIr3G5L3xh4SQs2Yv+jRz8lvXv35sPq03EiQPnty8ukSZNk+/LbIzc4vPBsfDwGbKp3Tj3JnZebGo3AAB4gjRtfgDwb/9lnny0LF34iXbt2lSVLlsiQIUPkkEMOkSdHjrR+wt2bcvxZx1FGWrVuKV06ddno8N+U4+cr8P43HP1VqXKQrFy5ilAN2I0DCYpALpT23ntvOGwnyplnniWffvopSvPViH3ooYe0vvGELYf/nHXWWUIjlYnGuo4T545/BfHv10W/yk033iijRo1KsIgcNYtBGSz5LSZt27SVK6643AqKkPz5v/97Tq6+uq8sWsSPCkiF8L/FpZdKt27dVEqwmO//5ZdflivbXCF0OMXqccw1ataUwTfdKMWLl1T589yz/ydXD7haFv26iLevli69tCXaBx9nCvL0pZdekjZt2ggdToVTjRo15eabb1aYbgr5u6nwf9GvwLObbpKRKo8jtLOviznFiheTNm2vkjbAM86aVnASEYuA/vN/xIOr+2XxLHmxNpZLL20h3bp2x4CSApkDPGi7RjzISI2aZ8vNN94sJUqWUKSM/JdOpn59esunn30eGsqAd41QHqbER3gAaZcvXyE33HC9/POfjyEjS60Rofkh7fobbsClPVB8rE31/r1/e50Of6LvprM/HP4Of8c/pz/9tBP0NSqFUf4W9j/oHJ0ioH+YiIecx5/OOOKDZvIx0yjD2EY03FCgx/gd04w5/eLGSRGUP0FPCK8/m8dC44ysZZ3gRvaR3JQAC1nI3tj9D8UMoDvuvMO+IPIZw7P16dNXmmG2UOHxv/TSHLn44kuslg5eb5IunbtI61Yt9cses7ks7e4hd1shf5E5aMAgadSoQZEZvzmOpuqztW5lM442NvyjcRMAvdHfv/cPxCTCGqL/T/CvCsfR8hUrk+ayyG/4zz5iV3vvTcfRBOnbtx9m441U+muH2UacjbMl8p++ffuqkcrxc5xXXnmFgWcT87+ihP+583OFjo/vv/8uizAGpdV+K5TfQea88rLik+Ku3mEzKwjjiM8bW/7UrX+O5H7wQXyk7HMHxOfhnnvvlZNPPknL3n7rHbmw6YWyEoY3STBLIeEG5Fx4YWPpd3V/HWv9+vV0JquW8iemFG3dy/ZPOlmbevutt+TCJk1kxcoVCpNsq/FGtn+hXN3vaq2/NfD/ebnzgWeXAs++NyAAKKrP6FWEkB3L77ADZtC8hHdTtPSfc+phRnPuB9mXmHr/cQSGBydhcBmdyXZhY+AZ8ABVC6Yw/sbAA8Uz6H+Lly6TG66/LjjWClYfAef+sUcfI/pRlEVokH3dduut2nbsv8BdyOzbmzpVE4WlESjvZefWBo9bA/5xjD7+gIX+/h3/Izk4/Tv/o5zdivwPW4L8y3BXtbi8nWxdXUd4iVQ8yN+1LDiClNZRKdlhAPWZopMpPT2a06RTvCFVS2/RexiQm1rHxu5/6NChcucdd+j42L8+J36qYBr/mFFPwe4oOH7OIBr3zDPJeGzMIp26dJFWrVrpWKgYcPxzMGX7A0yDz2B6d/Ujj5TKBx2k92WhtGnHfxW+pk6ZMlmfqeVlcBx16rzR4W/wg8G3id6/92/YuCHg/8ILL8jP//m3Cj/iP5dlfrJwIclKDjvsMKFhQvpij3/d7a9y5BFH6NV3iHFUrGRJqbBDhS0a/7hsqWSJElKhwo6AiZkPBg3H/5WQKw0bNJT33nnHeDEAU/mAylgW00QOOBDLrxCH7TPM4OTS2kmTJ8t2WFL80ksvFzn5c+45tkSZy5K5PGcZZpve/+CDmCH0q+I6fxo1ukAGDBygtMA4eOOeflrHvCOW3w3BB4e/VtxNuvfsIXPnYHz4x+XTc+C82KZESVsCPW8eliOdJkceWV2WLF0swx8cLr8UaL+RDEL7lLs90f5YtM+04047yd133SW7/bWi9OjVXV5C+xS622Gp9YuY9VQS7W9s+cvn0g9OG4n/5+flScOGjeSdd9+m8qLjr3zgAdKkeXM54O8HSHF8MFv4KfBs2lSZMnEyNrYojaVdc7VqUdJ/zj3nHHn//Q/ktNNPlerAs8XAswdTeMaRNWjUSK4JeNADePB0wIOdsPzuzrvulIp/3U16AM9exkwkgoKbeMyd85KUKFVSRj/1lPTp1Vvxj++IyBqda5wteSxmTVIVpP63dMlSLKk8Rn5btkyrnnHGGep0WoT8y6ATQa/U/N332EOm6tL4qCVq9kZ9/4SLYZzzX4PFxqU/h7/jn9Of8z/Xf7cg+ZMLx5HKVf6kZgoxUxm+KgrhPKnIuqyAGsHJYtepCvpVIe4wEFrjAZoYp4DHtu0k3LeR+h8yZBgcR3ei03zZf//9ZcGCBcmDjx8/Xvbdd99kOFwecNzxx8kyKEjFihXTsvnz56N+RrrQcdTyUoXDgvkLZCKWujF2wk8//SRlSpeFobyLnIbYA6fBoFAIhvFPnTpdZs+aJdtusy1mIrTT/tkvvxTvsuuuctRRR0lDKIDcwY4PoqBEC3hXutRnHoyIn//zi+y7375y6CEHyznnnou6cSqYDYWv5elxYxBD4xUsC/oE4/ybnHfueTBo7pcpiNXE52kNBa9zF4txpHdtJPhv6vfv/f959NccxhjjthC/6tevKzfeeBPOC9L/jBkvyAszZ2p2zVo15YjgTJo2darMmj1btt12W7mqXTssDZ0nz2EZ0LugqfLlywuXgnL5A9PECRPlmWefBa39IPvtt7/UqV1Hjjr6KC3TnxT/yc2dB7qZJPMQf+znX3+WffbZVw479FA5BzNFcuCciIn9vwC6pNHO/j94/315/LHHsWTjU9ltt930ORs2bCgl4AjikKZNny6zZs3E85bWZVSPIZ7RNBifpUuXlgH9B8rHCz+UmTNfQPP5UrNmLTmiGpxmgf8tAA958oknZeEnC7H0ZJHssssucvxxx8m5552n7QeIaT+R/uNz6lErbJ78N9LfPx7+h1x73bXJsM7H2K9G/KuScCgWHv83X38tb4E/Egfi+NPwb3cV+OiHC0T5KGIG7bIz+OjRR6rDhmw08t/5H+bKE0+MhHPzE3Xs7LIr4H788XIueGiJ4sVRTSuv1r/lWtex/yj/6NTac4894ew6IKkw8slR0rdfn+T6hBNOkAfufwAx8n6V4447QZZhdgdf7nXXXSfnYdxMxPe69erpOX+GDRsmp55yqkycPEn22hPtH5Buf6T069cPLRikTsAYHngQ7QOXOJ6lBdo/F61ldKl1PdAk2Tyvh+EDyqkqm3iNtIXy/3/842G59trrdIh8veeed770v/pqdZoBDNmE8X/9zTeKZ2cBz7QIsJo6fZrJa/ClduAL1BfGPzdB3nnnbdl5l79AXh8tjeCYyiAmV0zzcxdgifrjunR9EZZi7rLLrqBv4Nn55+gSxNh24f7XhX9cSr9nxAN97RkZ+eQTwLOr0a1myAknAA8eAB78uliOP+HYgAdieAb5T/4zb958qVeXeMZ7Ap6deqqMxlLR3n36QF85TS5p0UKaYtZaTHQccbltTO++866cf/75Cf7NnDFDdv3rrlo8GfRwFegxtj9zJsp2RfxIdlcE9L/IfwLI4pDwfHjAP0D/xgfQTPb1oy1cIF6oZdq78fH7+3f83/T2n9P/n6f/J8zU+d8Wzf+TGEdBtJkshcyL/iDKwij+IlKY55AlvIsHICLvsQsADN5VXOjXKuSzpjUce+E1K4SbsoeN0j9nHN2BGUdMJ51wovy6eJEGNeX1ZZdfLp06dUzGPwrxEPpgaQ0HcCLqcvo/40cwdYHThTOO7odBcMvgwWH8KOCADRispsbujTfcaABBYYcOHWTChAla1rRJU3n8icdl1SrGiQkJ99eqWVtuvfUWbYrwfxiK2y2Db8GyoOWxVnKsVq2aGgHbw7hmx8uxq1vXrt1gXFsfsSJ3UitZspQGsGSeBsfuBMfRRoa/Ps8mfP/ePyDwJ8FfHUevwHEE/K+PpRU3IFYLyUHpgQyhEP43a9oM9NVHiztGusANFzZuIk88icDSqyxYPxuguLukxSUw7r6WCePTuJ1BMOGM3AwarAVHVJr/jHiYdDNYVoAmCifSzdAhQ6X8DuVX6//cc86TMWOfCl/cOQLrn0H077r7Ltmm1Dag4/ag44k6pmOPOVrjiWgfqH733UOEsWkmYGkeU7NmGCfihnD8nAXA2QAGDQONVsLPLVj6Ubt2rYT/sOctjf/qWIF/dJLMhzOccKDDfBLiX20D41zFAgbN47rGn4Z/M8xSouNO+ShvYqNItWqDj95yi14/PW6s9OjRE6gfClEeqyrcawHuzEPm/yr/6DCkYz4mbqRw8803yZtv/ksuuOCCmC3TpkyVSnvsnuBCNThR6WhgBj9MsI01vf9ZL8xS2WMNZeAIqCM3IW7RmwiefUHjxsn4p8IZuvvuu9s16O+II46UX8NMJfvwgWfkeNFQhMWGGL+yFzSaOD21g9gLOvuT+I+OBANI918PsOdHF6ZdgWeMs7Ytgkrbi0bmfxl/O/AlylLynyaKZ49JHvhSNmXguK4lg4lngOTT2DCge/ceNsZsJT27FfRdC3i2ocbPGZ+tWl2GJzMXouLZ4Juhz7wpjVN4NhV4tvselfAMfMsCJ3Y1+RVORl51Bp61BJ5xhtxXcND+/e9/kx++/xEfzI5N+F82xhFHmA/H2XjoSZ20rWKYXf3B++8hlykfmyX8hNlJ3EnW0ojhw+XYY49D15vm/euINyH+ef/AA4e/47/TPwjB+O+G4v/KYTcz+9ueGQxBFQ0DSZQMegSI/lf9Ky3/nf8Cxhua/+bmzqcLGF+CQuN8q7jUd0qIq9bKXrEQBW9Tv6oFTTYp5j1MzGDVwgl5nN6cwzZihaQuTjZy/+o4QowjPsqJJ54kJ2HHnkHXDtJrziyYPm267jpDpbdxo8bYweQNjCiDwJo3YgnAWHk5LCfoCoXrUihcLRE7YTZmSnD8FXerKDvvvLMGxeVObDE9OfJJOeyQw3T86jiiQamwCoAIh1ifl6OeGi1VD6oqr772CpZvNEcObkBBtcOryW+//SbvvUtlTRsRGuy9aZjiksE/GV+lQMJ9DIQa67Mdi3GEoKobGf76XBxgHL/3v8XQX/NmccZRcJgi6DHfc5r+0/jfDPX7MFA9+E+H9lmHqqJHgiPEmHCBQ8RjGnIJPqPG7jDAJ0+anOwU9Oqrr+puQLybtx9x+BGy7Ldl8u677ybNNW9+kfTu1et39d+/X38swWssdHSNTztnU89LHvMsZkQlDmLETuvXp5/8tvw3LDc6Up+DcDkctLwnlnO8+/67wlmLOgMFMwO2ZP7L17EqbxVmSx6qAXaJIJz5SH6kCXBZn/GvC/7WkP2Oxu6Wfzvgb3LUkUfJUux2yXR4tcN1ltC74KELFsyX6xDbhTMyNa1n/3zdQRTafan3fwOCAo8YMcLy8ctlapQlk7FMmHHmiI/E33nccCHF/2j408nBplq2bhU2L8ADFZK/N9x4gzw04qEE/wcOHCiNLmiks0m1fdzBYIucnUo8i/RXBw4mdaKgg1Yt0X6XrgX6x21af33gz2dc2/i1nfiT6j+hV97MYXGkqfHrLcjfUP3Tkah4tnK58o1OnTvpBxMF8Hr236EjHcST7IHxuGvjP6Mhr//+t78bfYclXIcfbnj2zvvvyEfzP9IZdjrDbAON/zrg2UMRz9DmwAHAA8xW5vLOBA8wWMZGSutfdesBz3SzD2yS0RKbZHSjHqDQ1+NPP/0oxxwH50/Ie+ihh+VozOiM+t/sF2dD72mJYqswbdo0qbQ7HFO4XLlypRyEJfox3X7b7XI2AnGn+/898AfA0dSWo38qXDbQ+y/q9KdjxeuL/Cfii79/QEZJB4jwJ/I/h7/B2fGv6NjfipPO/zZr+tcYR3yHmsjAuOSJHE2ZGk5Dob5n5oUXTqcKGZ5GAg95iUNZ6+EH+TotMNxnB/6yiIoAxAjq8HZNG6l/i3F0F4aYLyfAaXTD9ddjivcJ8HLa7IZHH30EsViOVOfPWTXOUliUxpfwF1+cg51wrtQ4G8zkVvactfPgiOHy4YIP5SIYwbpcAUNctPhX7FpSA1vmMhhnBjuwXa1fgmnq0nCeCEU0ClFuNX3VVVdpbJiu3bqjvsGoK5T6lgi+zeUxXMbGXHUQMQ4BgPbU6NFqdPO8RPES8sbrb0hJxCo4+yzs7vbJQgUsp4jfO+we7esaLAt57ZVXFdQ0WjhbqhMMto0Nfz7Apnz/3v+fB/+LLmqu8UEI4/rYifCGG24yvR9IRvwtjP9NMROnL5ZHMHVEAOnxWFIW8f+Uk0/BkrGrhF/V77j99kAVrJkBLV2AWUmNhUsoxowdE2/RLdF3QxwPdtqwUUN561+Ia4L6zZs3k15wULH/pxDLo3cvznLKx85SJeRNbKHO5VGF+z8Lu78xHgh3gOPORIvCDlWVsb06++yA5+UsGeOFIvvtu58+71dffiW169RSZ8SE8TYjiUH3uQwkd94HUg8zsUh/XJL32huvY7YUea7oc+yOJU877bRjMh5U08QD2aNe42h9bp78lwP6ZOGnctbZ4K0h3XPPPXLKySdjfDkyEE4WLsvRpAO3YVfDUj9uakBE4PgLw58zQokvXIbWtRscIuFe8tHjsYSnHoJM897SpbcFr3wzkV3/evNNnZWz046A+waQf19/9bXuWLWUzgP0t3258jL9+WlSBksgn3j8Md2NM77/N/6F5wgw4AtufGETzBZ5XXManN9Arrn2miwY0BYrs/2zIVuWYetz3lsOO4FOw8eO7RCvhrNX+/fvr/eULoNxvvGvAvR3IeiGs1HYP5caDUL76f43xPg5Zu0UDW9q+f/xx59IjbNr4IHwUHiee7D875RTTsFpjgwYMECXAcbxZ1QfycGsrGrgNzYjmfeYvJ6gwyJg+bGp7VVtVV53x255kf4TPAvLDQn/1157Q4oRp9DOG8CzPeBc2QlxpzaE/Pv6q68wM7mmLKEzVPFse+DZdCmreAA8w/iYX3rbMvLmv97Q5yf/Y+KMztcjnjUAnl0DPEvpXz/+8KMcS8cRgYNbOOP5aATHjteffv6ZnIm4RlqMHzrAW7a4FPG3lgh3f5uB5Wmx7uCbBwsdluw59r8hxs/n3Rz1T4ABcNh0+q/37/B3/HP621T2t/OfzZ//6K5qfJEm1HmGcxhd+lUNCkGyTNuKwm+6doECvWCpuZ+oVpgzBmSqSmSiaeTgW4lqXHZ/usU/u/+hiHF0x12366DptLn//vvloosv1oCRfJrzG54v1w66Vm657Va575579QFrY8nDLZiKfjHqxaVqnHHEKd6FUxw/t/VlIGqmK6+4QtpjRgXH36F9R5kwabz2z/gu/DJdAoYrocXdblShQyPNL75IunTsLIccegihp/XHYRp8pUoVUTMjSxAc82QYW3GZG+N7MFYKl+CwLbxFGTz4JhixdammYGvmpWpML4CTi4p93FUNVdm63qPnW/j7V7zbhPi3JfcfYxwR/+ohhtCNN16veJim/zT+2xKu1ZeqMR4Ql5mVLFZC8jDTkXG/fvnlF6KnNIiGDs6/++47dfpqATD4CRjOhyIo9wrMyDsYM1o00D0Knxn3tFSsiCU7eLAloIOTTz1JVq205aGkm30Q1yy9VI6O44cQG6V4ppjew6WtdDgzFS9eXGctderYMZlxRGPwGQTQ3xHOh0j/7TuAzieAzpGaw0HWu3cfXWZ3MhxialijIoPKXgHekA2iD1rcCuhvzksvyiWXXKKw4Q+XmVXD7Aymi1uAx76I5cB4VwpMZuJ8B+yqxm3sI7dKzziKfDTGR2oKPvoaHOmse9FFF0mLSy6Wkwh3TRk548zT5YrLr0hmRmwo/sclkRzXa5jtRv7L/rkMrg6WUNKJwjhEN8OQ5vvfrux2cCy8pk8U+28MZ6jOcEXGeQ3Ol+sgh7QZe3Bdcsn2OZsugidZ/oQ6jG9zM5assazsduXQ/iv6HJH+OFOOjiP2fz5i/Vx7LdpHiv3r+RaEf3PmzMb7aJHA6nHg2eGHVYOCkieXXNxC5syZo+NP/5SvUF7mvmTBsan/dOiImZBhhrDh2XBd8s17VF6/bo6+iy66GH1drDLZ3g3w7IzT5PIrrsTM4cobVP9ZgZ0sWwAPXgEexBTxgO9yOPDgJuIZ3ux2220nr78GfKS+pQ+WkcZN4EBU+oC+AwfiNcADFjGR//z0A5abFZhxlI5xZNjCZZQz4dTPJhs1r+3Mfm+97TapDUdnun/CX+VguHlLxb+iqP9uyfoH0Ym4lKNH4l/Rsz8c/ngvTv/O/zaR/e/097/TXwYxJvidDQyWTDaVUlksSergZWegTZlSjHz9SqX+a7Bofse0PP0ShPPYquosbBMp1bTVL5BjddJZG7r/ITAA7+KuauiKy9Tuu/8+LO9CMNOwvIvBcWfPmo0v4mfLt9j9if3fe9+9ctJJJ8vFF10C42WO3ssYES0xzRsAkddffUWeGvu0vP/ee7rG/5eff9blZGE00vryy6RzR4sJ0B4zjiZhiQv7V4MyxD5hXe7gRgOUfTZAwE3OlKgDp1UAHXIJY3sbrB8T6w+HA4oGbJ06dWK2ztagMynCn9PXOY2d9VthtlQXzJpK3m1yF05SL4l1kzpbwPtPDU3hkIzNx5+FQApIv+f9X4QlkxYcm46j+nITl6ohRfzj+drwX5ewhaVfMfYR67P/Woghog5PXA0a2B8O0AtYpPyHTpd8LEnhIz/66KMaxPrDDz9ErKDaWkd/bBDJdbzkcThmDDIGx7r6n/nCTMzQ41Iqo7/ZL76oX+njUjTG2OmNWGjabvgSznHGOGNNQcd94ThiYgyaf2GWUwQxjwdXrSodETPk2GPxlZ8pFuLUnjVkbCH09+Xnn2N3qNPD2AQOxhuTwOePPfaYzJj+PHAmI1988bks/PhjBccO2Cb9ZRj0Uf6k31dzzOjq1advAv9umAlCPsrEGZsDrxkkF15ApwmdSRGmEe4dLQaLloSfPwj/nj16yNixY5OWaJTTORPxPy4j5jvNKVZMA7Cn+Q/jH72JmSksvwQzOLp371bg/ffo3hMxssYoPNgJlz1diwDbdAxR/jImX5RjsX3Wi/0XbL9FiLWVGiwrM6WyNmf8+wJ4djrwLABR8Yx8iWNSPHseeIZ/X37xpXwEPGMyPIODkpWQ0g7KZlgy3rdvL9xhhVzq9+yzJq/PB55dM2iQzoZ8k865VKpycFWV/6TvFGjDY6Vzwk2prDXBv3uPngXwrMH552H22HXWHvjPqFFZfYaberz3wfvqq2brbJrxj7J4donFZApd82AzjhCXKIx0xEMjEBwbvCnFf75BIHHuEEhnrj2jNVAedPqf1DJ9fpg74aQTC/QfQPuHxx/hvznqn6lX6+NXDEtDxHAoTSRrwn9//0ZBjv/AHegJUf4prgT9K41VUf4Ru9L5BXAroJ4eUpUK1EnxP21rM7R/U0Nz/qP4kIZIQIJUlr9/0kwASMD/zLz58/GBybLppae2lEfCK7T7hRIeSrPwjGd2JAPjzl5UXxMtjc3FG5M70RfycvA2eCeNg43dP3dVuwtLHtj/CSedJA/cd5/8B46e46HUrcQsBOaf3+A87DIyGmemSHK3J+66YzOT7Ku3Bhdt1VLuu+9+nY20mkvHME7buOyy1ggm2Rnn+Zh51BFLXMxx1BSGdl8soWGfhH/Pnr3kqTFYeoOvfg2wVTWdRpzFUTClGg4FNBImIVDvt999g7guzSwX1V575TXZrtx2uGYPGcQ9aAPH0VRlGHQcdYLza2PDf1O/f+//z6O/Zs2b6k5+RMD6WBp0I5aqKbIF/FsX/neCo4XBpompbIczdIjpzKiDmBwMpMyk8VywDC3ymSpVqupMDNLfI4/+Q7csnzv3ZWmOmSbamN5V8CdSUA5oeiJmHO2B3YrW1f8sjelxaWgkg1mHL+I5BqViGDVDDKO+6C7L/3Smgi5VY3DspgiO3Rf358v33/+IpXI97Ws9+B8YorbLZ7oTW7OfceaZWzT/1ZkHmEV2CHa2+235ch0/47IMQpwevtO0/Hn0kUdsGQ1KaNC/FIxUwrGDzuhCrDgkLnlMw79nz57JEkY6jgYNGig/YPlNTyw9fAGBpeP7p9JJ+N9x551S4ywunSvYP+sRh6IY45vSPGYmrcCVjzZuvulmeXD4g7xDE7dNv+uOu6VYccxaC/UnT56kO07F/v+FHeC2LVVKS8n/z9Jlxp+g6Xzd4IDx82L/dMIOR6Dh2C93v7rrrjux22dx7Z/yd9LkiWFHK6v21ptvIeA4AkGH/s8660wswf5Un7wrnGst8OFjS+b/eavyMQMReIYZiEyNwDcGDBi0mv7xCPDsWi7XAmS2B57NnYuPQ3jpfE9pB2V2aa29f8Uzymsk7qw2cNCAgGc9sUPjCwZ2LbWfO6F3nHkm4v2gYbbwR/Sfm7BT5fA0ngEP7gT+crl65D+KZ9gBTjtBP2+99S/ZBru4MoPjqoFlogs/+QTDzUg3fKxqATwj/nH8pL+f/v0DAlzTcWRpBJaqHXvMMdpcGv85o/Pjjxfi/8eYybkEcY4qYue3vbBzIO4NSK7xj8Is6dj//zL+dP82QKO/zUX/dP3jz9M/Iv4niB8Zd4K5m97+8Pfv79/5n1HoH5F/zv8pk1fXPzem/Au7qtFxBCVJBT0eiCe0fyj541q1WKaMGHVwNJ7MgmAsaR27TfJ4L9vVVnScWt+ykR9K9LBx+x+GnZRuD7uqMS7G/Q/cp+O/HLOCZsyYgSfWR9c8Pji3pe17dT+c5svFF2PGEXZV42PTcdQQymL16kfqPQQXtwXnV+CddvyL3HjTDdiu24yU1q0vk44IzEnQdsSStRhU12ZW0HFk8KdhM2bMWIIOjqNG0vqylnLG6WcoENE9tt8dqTFQeM7+7CcP09HLyfaIdfHxRx9rbCV9OWh1DL5+H1S5cgL/NldeocG/eXt2V7WNC3+ObVO+f+//z4O/BsfWXdUy6ji6AcauoinfOU7Whf8duSQkzjhqwl3I4GgJ/KceHEcaSBh4yxg4jRpekPCfKlUqw3G0Uknh0UcelSNBj59/+oWcjmUiTOz/SdBNBcQOosAm8Ub843Kh7cuXw3VG0v03QQyQftzmOvTP4Pb9MKOIiQ7kt99+Rxho13ZVy7dd0/piRhHa1g7B/yyoLndjgmMDztzeKOf4I/4xMPMTjz+BgPtj1GHNitzR6Jlnnt2i+W8c/7nnnifvYYYmE2dFPPt/z8q+++wDAAEQQf488ii2Ur/GlmuV51K1lzgTxJBJHXO6q93q8O/ZvRd431PatjqO4OSL+PfeO+9qLKCxmCHKQL5Mf//73+UZzBwhj0/3H9+/vkSWaSN21FN72XIPljTfdvttyfuvfsRRWJZ2P2LOldIainMY1uuvvyZNEccILWh6/DEsnarGTRMy2O1yicoS4jKHOHgwdtirg10CUXbvvfdgl020r1eiztH7seyNu/ul5e9rr76mO3/pc6LVZAkg2luM9o8+qrqsWL5C++fS69q1MCsPnUX580fHz2fUgXJgOC1K8v+8c89N8Kw4nHjPgr722Rd4xgfV582XR8A3YjwpnXGEDTBsTHmYcYQlp/zQg7pRXhO+fP+98KFnzJiAZ3BKDQKexfG/+947wLMnZBxk8IqAZwccADwb9wy6DYAK/a8v/O8Zdq/cDjzjbUzVqwPPoL+UIh4Q7qHZ1155HXhwodZh9mPAs8MQEJ6ktRQOHvJI5Zkou+UW7EYJvYVl8f3/COf2sXT+oEFm03F0DHaOXBv+G6y0OnaVe1q6d+uhF5x9NBfOXj6X0gsai/Sv9/zO8a9P/xH+htcGFu/f4e/4B1pw+nP+Q15MhkhG6fwXYNiy9R/K7w0t/0KMI/tiQ6ZCPGLSr5A5OXpUNMvHOSU+alCVyCGwyYmTJ8IZitESZLt9qWM7mlDXdiKJGYWPG7d/xiphzBImi3H0AJ49X6ecc6kYk47MNCl5EsrfIYdQ6aLjyGIcsahz5y4aI0NjdSCjVImS+mUP2zrp/VzGRscRLy6n4yhsX5v+gmkxXjBTAf2zzfgFk/2fj6/w/fv1k4MPPhhxjGhJ5eNraX/sntN4rfBfsniRHI64SfoycEcTOL36XY0lHHhXkyZP1jhLedjRiEkdR1iqpm8t9L81vH8dfIGfjYt/BbrWiy2n/4suapaacVRfl4YA+QrQ/9rwP+24aQ5HS69+xFvjOXXq1Jf58+cptAZgZkrjCxoCxUkl+VIFOw+uWAUHAOpyhsoR1asjftHKQDfAdVQb2B/OJizPWHMy+Kf73xaG2L0wzI/CDmjLsRNao0YXyvvY+Yxp9z32kGlTSUuMYWQzXpphVmBvBK1HSwn/S8aJ/jkeBscmnS9GkG0uh43p6ae5fXc3vSxXrpzGLdmS+W8c92Two3bYFED5D+BWqVIlBBS/HsZwdX3v+eCjjyDOlDqOANkddiiPZTF02pv8WRf8e3HGUZgJ0rBRAxmEWSYMbl4Q7k/rUi32XxazMi0ukchnn30mDz04XL754XudhVS3LgL7rkP+jXwSy4LChwWO7TDEanoQMWbKlCljQ03hP2e+HIOZG8QBJi7t7IWZdcSLUaOyy8y2KVlKZr00R8oBT0bCadm379WobdyZ7Q+HU6p0aeIQ8tQiUvSX5dg18GjMnF0S2rfdNnsp/T2py9jo/MyHo6EUNnt4UePfbOn8f/KUSdKubbsAvYzGCLw+4BmAgZSRhx9+GDsawkGJZEvVgGdB/zE6nogSc1CSjqP+E+U1hXdDBDOnU3sRYg9ul6bvcWOlBxwpfHvlym2P+FSvsBvFM84g++677zHT7CwEza8bnhFPBHyI/bNf4t+oUcQDONORqCscdtjhcBrdL2WIB7jGLTgY/1mexjOUceMObg7AFJdL8nwb4MFsbPpBumCbhmGCGEeYcXT88ahB/ILjaMTDWM55tF5H+ov8N41/X335hTTDTM8vv/iCzau+1LNXD8W/2LYWFPjZcuRfhD9AmU0p+s9mps98/FH/jTiyJvzfUuyP9Ju3c3///v7N/nP8DxSxBvnn9E/sgHyHlI/6h8lnSBvKbhRvLPljjiMINsw4xsOg2+QB+AITNLbHTTQL5qdFI6850ZnODcvXX2TnITtOWrL2rAO1+VBX623k/odixpHuzoOnVccRZxzh0alscwva35bZtHYU6247U6dOTcZ/8UXZ4NiccXQ8lKv6iJlg487HcrROavgw1gQNl2DbymWXXYayjlpPtx1nsE0kdRz1xYyjAP8eWMIy5imb+t6wIQwexEyISzII/uKYjt6iRQsojYdpUOwFCxZgltTzCMr7FwTvvVvbp0PohZkztX32f+rJp0qpbUrJxPDVVAvwE2McQatL+t8a3j8pbFPi35bcP7e3Z4wj0nV97B52/c2YcZSwBeMba8N/DTZNukA1c6iaoUPa4q48C+bPV+aoM45CjCPicpUqB+HrOZ2hcBwhxhG3u2f/7Gf8JGuvBHZPa9HiEjW26FSa/+ECmTljpgazHjpsiOJ/un+2y3tOPPEE+Qq7WH3wwQdmWOHZ2mEJSBvsspY4hlC3GQyzPn164Yw922+6/zieVzEjhI5m7vB1JnZt26F8ecRYelC4+xrvPKhqFRk9+qnQCuHFpOIA/aOGZvHH+tFizdx8+G8a/9tceaVMmz5Nx8URkS733Wdf2X///TEDZ6luRLCcy9mQKlTAUjXOONLxYkaXLm2MfLQg/KPjiO01PL+hcPvxSy65GLz6HN0Nans4oYYPH2ExqFDnIOyUNzbwa87suRe7vDHRkaf4jKlqa4I/n40zTpcupcyw97XffvuZ4wCXsPdVLOYUy0Gso2tkH4ytW9duMu6ZcWxeE5+t9LalwfefkuUrV2gzjFM3ePDNcFqy/aMUFvr60SbbTzvAeENOTnG0P8jaxxK0Z7CJAhPHX7d2XezoVgZ4NSqZZVK7Tm20f4th0VbA/7kbKpdMpRMD4v+NeIZdyV6C84SBzQmvgkHYuVTNHMSEP2cO9knFJEwcR4BkQ2yqUbduPaXvc6ATnHnGmVKuQnkZ8cBwC66NzqtUqaK7obKf27BNveIZzsuV3U5eeeUVyQBPTAHkkxo+kdZ/g/P6aGwQsGTJ0mQIWTxgPUO0nJxiGlOLM/eIZ08/CzwIzdABWgY7ro3GbqwcK5Pi2S03K//7ZOFCufNu7DaL+tyx73nEf4qpGnaa2xWxEtk+d4gti+clD/wBDibiP/WPjz5aoMvg/434RhgSHFpltP/dK+4e2BUfBCUuf13/IIIAF+zg+mfU/8kX1kT/gNAa5Q+haAS+ecp/f/94fVuB/DVCd/6/pcg/OI7mwdlLpZgIDBaUByUUJwkDYz7eN691XWYwAgMKFOBZCLGA9fGor1jCUJ3x3Grrb3IjykLGxu5/6LChcucdd6L7fDUM77vvgWT8V3EnNHwJ53j50wYKZ7ur8LUyjJ87p8Rd1eg4oiOpZu2a8tmnn2kbZPo2fj3hhSY6jjjjCDxCd2mZqLFc+AWTsVwws4L94X+P7j3kaUxtZ38Nzm+E+B4Dhdt7MzgwlzL8P3vXAZhFsfwnoXepKiAEUYqISvH9bSAiilQRwQZKs4ANRB+KvYuKPhRQKZZn7yIdRPGpCEpRsZCgFEGU3kIvyf/3m739vktIKJrkS8Kskrvvbm/ndnbazs3OuvZdm3zEg2twcgN55923Ff/ffjtbJ0mcIKcvBZEPYw+iM6iyr7n2GkRN9Uebh9f4B4QZM/rLz/DpQPnmG35RT3U5jpCPI0C00ur+6N/lBAqWdiFnjeY4Coick+uFC5OU/pnj6BJE4/EWGz3xpBN1+Q156FUuVTv1X7iRgm3LwTdYisPdB9MX0j/5vwHyn7z11jvKf2H45L9ACCgc8hnbL1u2nEYZlYHDJ7wL25VYWnfPvXenkX/uPiMVnCOMkQqzvp4p3Xt0R5sOvt70f9D+gw88KJdh+SvhqwGp7+FeJb/IX0Uo+wykrt+wTu7GEsBP4Zz3iNYuR//4y3L00UfJ59P/p/U4HvvDP5f80hHEwqVqrbFteXdEi/qSHv900F+CpUbUf3ci8fCHiBLhIHBpExMdFypSOEP9t3oVdvU7u4n2hfSRmfwn3KHDhsn5WHa8aPEiRBp1kzWIaEpTtM/4WIHIKy4Nqlr1GOTDWi1NmzQhqkL6xT0VVI/gbfjwYUg4jvaxXJmbKqzDpD6jwsiu/77yX43wUqP1MJD/69dvAJ3d4+iMuMR/5P80JUDo0UeBzvDhxfOfd3RzfLtyCS2WnOp44OGBpBUsNeUF5k+6oFVr6YHl7HohTePuB5eykc5YqOs/GgM6Q+FOjd99DzrDh6GM7K9VoIOz4cTOTP8Tvqe/ocOG625uixctAh10U+eOAgn9Yf+rIO/QK0h6XbVqNX2Wzkw6mxQN0T/uN5717Y8bN06Or1ULu/JdrLtL+gr+vmIXwop5JM+D88zhgvjGHY84vktwwewPjAbxjX+Hg/2t9GLjb/Rv/K8C0eSfyb+8Jv814ihqRKlfO5DrTsOH77mJVKDgcJsGTgrCCVwd6j08DyNUJzhqFwRPw9rRr7VUFijashom+8JgGBZvBbWCtlkP/zibYqGCxc+/C/9VLGfh11822aZNG/kPvjA7IzIVBuMXcj3yAHGrbobzjx83HolzqwGog89ogylIcMry4P2YwF5+CSIhfpU7sDTi55/cUhYSQZUqVbHj2jXyAL7O4UnkT7lFevfurc9xAsmvv7zBrbiZQ8HDfwQ7o7z62qt6j5FFNC55b8WKFfIo7n02/TNJSaH3jmhwxm91JPbtgy/3FyGKweOfhi8n3mthcBJ+YUx8Wl3QSrfeZfQDcchlIjfccGOkHQLNCfzzfZRR1ApmL1w/DH7ex/+NN9wk0z79RGmu21Xd5U5E0Lkw5IB3MfaZ0T+/5L/HhPSo2ge8wi/9njauwDbic+fOw9PMyfGUOoQ8/5/2f6fJxo0blabee+8D7FB2osInLf+FpRPcano6ovJSdLmnNqEwqmPJ2fXX3wC+uUgpv1+/vi5nEeC3QMLZDRs2BltWO+6sjyTcXOLKCRdJl8mY333/XW2wt/Jx3wj/kcbvxv33sfyI5+RzRshs2bJFoxKZOJeTBBb2sWKlipAP18kVXbriFwvvpeWNrJJ/2jKB5CL+Y9QR8/hw57yt27CMy6FGMVAS0TL/d9r/wdnSXaM5iaAD4Z9j/uqrr6Eqlhf36IFNAW50eMf24aRHtkEYlSpVAq31Ad6ZD8bx35TJk5GY+jZE++yWc5ufK/zQoJUz0D87du+Qc5qdI+vWrUMdVyjb9PXpkNE2cR3XNP8WouF47/fflyIPzADk3vlF9iCnEQxLrRo0ay6BBg6RixQr6EPMRNWt2tqwNte+gOOpwlOmuvP46lmk2/pfqXyY+vh2645eff5JdjC4B/GJIjtyoUSN5DO1XAr3lpvF3/XD459A4DGY9/X/22WegsxHyKyIOt25xywX9KJHOTjvtdOmGpVYub6GDf5fKJehrFNIKHcwkIcqfhx59CMspX9N7jGi8/vobkfuwvya+ZxSBH/9KR1aS3tf11qXjHH/SCHdc/DccNRzjc5qfI8+DzjLTv1wu2+xs0Nn6EJ1FWlfwkT9vcGdJpbM4+X3pEuEOg78s+EXhsFLRYsVAJ41kEJbrVaxYCa24t5wx4ytEZfZSWlEiRV3e41goPeMsHsv3iMOjjjpaRo0YKUOfG4rlkS4iELelACKSTjv9/wDzdqldp65rGcjKTfafx//hSP8cI+u/4z8bf6UE5fGckr9Gf8Z/Jn/yvvzRiCO1DZSjETKkFhGGFsldI3YyPxPhBwec+6bRuHFFSSA49/YG7rEN1lbvgL/N62pJORC4x1quXlCHcf05BH/njh2IvNmLkGvkoYh0x8HftWen7Ni2U4oWL6bLVXRtZaj/yTA4mcyVhr5/mJORP+HcWYFlLVWrVJHKlY/W/u8gHET+MLQ73H/NQQEclChR3DeB+w7+lm3Jiv8SpZjDgs0AUwH8vbt3yXJsHbxq1SrkuCimX6XLlSvn6uGvjk0I/8uXL9dJzQlYilG4UEGFxXD3FPa9FN5Jx0kfj8AX7KiX38dfl2Vqt0mn1n+Hiqzhvy3Jycr6JUJ5PhTJIf7PjP712QJY5lCsZBr5w0eT4XQpjAiQoljW4wolSJwu2WTOmGJFi0oh5IbJSP4wEewfy5dh18FV4NviUu2YY6Ss8k10/Pv17Y/J3ESFe2UX5CzCEtJF+Gq/AVExx9U8XpjoNb382wJZwEkR89mQjNLzHx1F7j54OdT/rbjO7b93IifNUYikqVy5shQsUNi9+2HOf9wZcvmyP6QA5FXFihWBm6PgDCmg+uJQ8M+cRixuWZfTP8lbkjUiZzeWgB2JyS/bLki5yBLSPzu375LNqFuhQoU08jc9/KjwcGfpx981zL8Ovh5Acl7+0CGw8NeFGnFy/HG1MfEGD2bh+HOp20Is8eQS5+OPq6k7vKmKjbH+9f0nxyjjEEUh/OeE/lkJHbocMoHjTwfK0UdV1nHJCP9bkkFLwFkp6Ov09g95nIV5jfz4JydvlsVLluhubkchgqly5Srgb4wtySA0/uR/0iTpLDv7TyfowqRE7etxxx2vCf7xGij/DP9slzJyE3alPRJO2KrHVNO2XbuUiL5kTP//FH6UeNyZx7/B57ga/j31OcbLPfOP3CD/soL/jf+iPMYzkz+U86Qskz/5Wf7GJSYtTGUiOi0BD/CX/9LE6/o9CkZdKgxa+jB4L4WEEdxTg4dXaBfR2+Q4SO8HLeOcLMUb+Ed43hkC5WbwAywRPSj8ZfiPEpHRH5y1xn/ZLn90qRqTXYP0ruoKx5HmMuFPw7/Rn+k/0/9m/5j952wzs3+dzaqff2n4m/1v8x+b/9n81+b/On8I3CP+oLP6/OT/cBFHnCmFuuijW/jBgjukxcPRE7g2nM+H1gOfCQ74oSXyEyfwRqGGr4MLgYMoBYTFdvWP90wafCCE2AtKEF1k+Df6M/7LOfkT3T0JOYmYBJe5TEz+mfw3/RfRTvrNx/Q/FLW3bbzSDplDZv+Y/Wf2r9n/ERlh8x+b/2HeC+Vp81+b/+cH/4fmOIqaPrSH8A0BBM4vCVxiQUMxWviDXh/3V+/RiPRexuA6AkKDWjjitmZBUmOTxpVzKGlL0ebYpCsG3/Bv9Gf8FwP5wx0RJ0ycCCGFvDjduyE/050m/yijIyUqsKkFTP4DCab/TP+b/RMx+CgXzP6LoMPsX6gMs/85WXaK1OY/Nv8DNcC6daZDZKKM31ps/mvz37ww/01MTCInK/2SmBl06pKH4iIuOJvI3VGhF7mmUweldd4N/0KMAB7k0jV6WbWK+xNU1LrBuZt8RJ83+IZ/oz8wBxSI8V/Oyp+NyNOx6NdfVVbVqVtXt5M2+UfZTGEdZPfBqcNJWOJH5TeJ1uS/6T/T/2b/mP1n9q/Z/zb/iWAgmPPZ/A9WUoALf/TWlM1/iRsgx+Y/NKVzr/8lKQmOIxalYJ6AhN3/eG9H3SRqrummp9SVwG/ungyuBQfVFK5m9LZrhzC49MO3kuZBg+8RaPg3+lMeMf4z+UNhYPLX9I/pX7M/opaT2V9KDVEDM2pKmv0JXJj9TZ0ZJQ+bf+ikwuZfNv+0+bfa01GFEZyZ/yFAhJt8O/mZ+fwLybEDxxHQGQ+lG+wQ7bGJ78z40qwCB5dwDG+rGlSCTAIAfIamOaNbZOsNqvbwV2oqM9QL6gZV1KPm2jH4hn+jP+O/iFTBCeWJyR+Tv/zgQHIw/WP6l4SQrpj9YfaX2Z9mf9v8w+ZfmGVyqSxtR5t/2vxbP7Goe8L8D1npf4lLCpaqgc+cUzrCbmS9aHFAgfwUMCYMNW+++TqMLIs+EDTGC7quIfqbu/O47eUdPA/XH6PsHmpOq6INeksNvuHf6M/4LxBNlCwsJn+ABI8ML0x5NPnrPlYox8CMMP1j+lcdTRQaAc+EjmZ/+OlWSJwoqsz+MvvT7G+bf9j8z+a/Nv8/7P0fSUmJtAgisw6ShDqJdMIRNaxYQ5MecnLiFmJiWuKe4xNaeC84dRdofLgoJI0Eo8EWVNCz6B9c5w/+NfiGf9CC0V+ULcFTZCvjP+CBYsLkD/hDv6VEJCZOnAg1+auo8H9M/5j+ZRS02R/gCLO/iAQVDVHTU89wjUf+NfvT7E/QgtmfjlUC9jD70+xvm3/Y/MPPv+KSFiZhJUSgLFV1uj9OjVJ2BJJDFa6SDoRqVJpQoGhdnKRinQ1D6fkMAoNgp/Cur47rhIom4uLdl199ks8Z/ADPii6Hs+DU8G/0Ry50/4z/FA8mfxw9UMbizOSvQ4fpH9O/Zn+Y/WX2p9nfNv+AbWDzLxgGNv905rLNv83/kHX+F12qxmUe4eSbVLz88hIuJD790I/KUEu4iyMFUxwms7iXJveCCiydzlB6oRlnzPg23RVytINg8A3/Rn/kDsdzxn8mf7ys9DLY5K/pH9O/MBnM/jD7y+xPZ1Gb/W3zD5t/2fwT82ibf4f8FeZ/CDlXssn/wuTYnKjSuaN/gX/1UOKXTmT5Q4011ggV/tCKoavBNT8F1vbwJxXOI7bF20z+S0eRFhy1eYMPdBj+lV4CmgBlOIox+jP+M/kTSMhAbvJAGWryN0AEEYIS4MT0j9O1pn9BEmZ/mP1l9qfaUhSPZn+rOaXqgvrC5h9Um6op3N8AJ2Z/2/zD5v9eQHgOcWJD/1KYHsb2d1yS31XNyQ5iA/+IMH8AA8G1RGePKh3c4Fc/F0jkIgOIQ9bXR9QrFCypcU0Av6iB5WlaQsjmcJA93XX89Q0ZfMO/0V/AhsZ/Jn9M/pr+Mf1r9oeb5Jn9Zfan2d+cL9j8I3Bv2PzL5p82/6ZIMP8DsJAD/heNOKLDxjMeTnXGqmQYmb1Hvlqphz7s6wmq6GP6x4kyGnls1IfQ8TkXah+tqTDRlo417kebCl7IX+G94KuRwQ/wpdjFeRRpAWIN/zAr1clp9Gf8Z/LHCWuTv6Z/TP/SjjD7I4IBtavM/jL70xmTUVPS7G83Gwkwonzi7Gqbf9j8Q+WFYxmbf0WFRqBWbP55OMw/NeIoDtIwBdwQTDHgruE+JMxdhJggXHTOCcYHpUg86mkEkUpQ0gqfQl0cdKvjiLeL1/lFINjVBcfAdNdnkJHbOYz4y+Ab/o3+jP8gC5zMMPlj8tf0j+lfsz/M/jL70+xvThJs/mHzL5t/2vzb/A+5wf+iybF1vsalZGk+x+lVdffQBeQmdN655H/TXxSvziEf+eLcQ3AXsa14DDJCj/zzkdAivcKaKB6mwY/iwmHGoQd/Pf6cL9ffpEvO8G/0Z/xHTjD54wSFyV9+njD9Y/rX7A+zv8z+NPvb5h9+/mDzL2LCzZrckT8ddjSVij/HZV98bda3+ZfN/wNqAXkc3vPvSI4jN/lCMDuy9DsGCZjM8xpQxcmZ8hb/6EzNsde+LOWMd+69FkxrgzbJhr5EWZJXchr+2LEfy7p16/3LSJGiRSShWg05tmaCVDryKNhcGthPzwxfTktu6v/elD0yY8YM+eabb2TlqpVS9oiycvzxx0vbtm2leIkSivf0+N+8aaPMmTNHvvvuO1m7do3Uq3eiNGjQQE488cT94n/WzFnyxRdfSLWqx8hlV1zuiCCD8V+0aBHe51tJTEqUPbt2SrWEGtKhfTs56ujKuW783aBycF3Jafoz+LHlf8O/4d8Jd+N/YsDkH53P2WP/7MXHs/fe/0C2bd3iiE3/RvmvfPny0g56MjP4B9K/H435SDZu2Bhpmy3T7grr/wIFC8lll14ihQsXDupF4fNCePx/W7RYvoUeT4Ie37V7lyRUT5D27dtL5aOOztD+2wi7Yu6cuYFdsVZOqFdPGjU4RU44sX6utf9M/mc+/oeD/W/jb+Nv+t/mP4EyTKP/TP7RQRg4PjLxf7iII70JdGk4qJoQTuHDQRTxEQV+FBW4KnMYMgbWU9rjHywtYNEH3Kn+jJ7qq+g1fQ7P07Tx9XXpGq9lP/xVq1ZL06ZN8SrsiOuD9iW4UrpMGRlw263SqdMlGjWlPpJc1P+FSQvlpptvlqVLl/L1UaKjexScXi+MeEHq1q2rd1wPRejUap0wOgAAQABJREFU6dG9u6xevVqvh5/p16+f9Onde5/x37hxszz2+CD56MOPUD1Vjq1xrEyaNDHQuWnH//nnh8uwYcNkz569UYQCEg3Vx594Qlq1apVrxt/Rbezoz+CTRAz/sZJ/Rn9Gf8Z/OSd/fvvtN2nbpk2gd/0hqrNLliyhjpf09tfB6t/69U+SXfhQEyk0ysjk6crEiROlZs2agd2Wcf+fe/45GTpsuKTs2RNYR2wkTgoXKSRPPE49fkEa/b948SLp3r0H7IpVUWgBfNoVvfv0iVxnj1lM/pj8MfmTMf/lxPzH+M/4z/jP+O+fzD804kg9bKmINEKUDdFJk8MdfWiac+ZoxA0/yqn25x9Xj1+2Itd44iST3mdjcXiQMJzFwQPO/U8ccxr+ij/+lOYtmtMXIp06d5YKFSrK2jWr5dffFsmvvy6UrVu36ruf+q9/yaiRI6VYsaLBO+Jdc0H/nxkyRJ5//nmpVLGStIYhV7Z8BZmJ6KNZiD5iqYXIo7HjxunknPhfs2aVtL+wg6xfv16qVasmF110kR7HjBkjX375JZ6Ik0cfeVg6duqMMzf+UyZPkgcefEjWr1unbfIPHUcTp0zSoWO7LKw/bsJEua1/f73UokULNZK3AIcjRo6Q5cuWS9EihWXipMlSpUpl91CMxz/W9GfwY8v/hn/DvwoxyrAY6B+jv8OL/pKSFqj+LV68OCJ32jmic5pQ/1auXEWuu/YakEXU/joU/fvM0GGyZtUq5ysCasP213fzvsNHo99UN8+Y8RVsnQqZ2l/jJ06SW/vfou/UosW50qZtO9m6ZYuMwIeo5cv/kKKFi6j+r1KlCo02/QjV4cL2sm79BqkOu6JDB9gV1avJmI8+ki+/+kp569GHH8UHuI6ori/mem36X3Gjg2LyR2kj7jCaf5j8P7zkf26b/xr9Gf1F1PHf1D9x3FXNpxeiHa2mC4Q4vA5KX3ovcAQBhtokkR3OnBmAd3COoXB4tHcmBbY5avpa7iH+YkJuKs+chr9ixQo5t3lz7d+4ceOl9nHH6znfdcvmZLnrrjtlytSpqtyvu+Za6Q+nCPGRW/r/+RefyyI4ubpeeaVG9HjM3nh9H5n26Wf6nlM++USNOfaJzq+nnnpaSpcpheihMVK1ahUdjT0Y165dusp3c+fKKQ0byFtvva3jv379Ojnt9NO1/xe2ay/lypWTl195RWoeC8cRjMv049/y/PPl999/l+bnNJPnXhiBNtSXKathzJ7fsqXs2L5drr32Oul/a399N1JALMff4Bv+jf5iJ3+N/4z/Dif+S0pMlAvx4aZ6QjWZOgV2Bcr++n+o+pdt0THj9a4/0l7pfMklMv+HH6RJk6YyavSo/erf81qeL8uXLpNmzc5G1PKIiP23cuVKaXnBBarHr6E9dBv1eBw+DI2Up596SkqXLi0fwVl0DOwK2n2Ssleu6HqlzKNdgaXw77z9dtBj5z46UP9T87n9af3fP/3b+Ofv+ZfRv9H//vSf8X8e4P8kOI7IyFpCkUK8SMODjh3/gUjr+D9aATUCJc967oGggj4EBOjF4CYP8BIxcadvO+0zqEBnEkqkOZxkNfw/EHF0bvNzFcr48eM1N5ADGoV/4003ySdwHhVCboCx48ch2qaGVuGf5ORk+Xz65/LLggWyZctmqV27rpx+2mlS87iakTrupV3/mU/os8+mS1JikuzeuxvwamlUDvMSZWX/J2IZ2S23uC+Gr7z8Xzn9jP/D+8RJ69at8NVxsfTq2UsG3PHvNPifPGWy9O3bV997+mefSWV8Tdy2bZvcetttqN9TGjdqLKNfelGexHKzY+E4mjRpkuujDlAcvkgmS0PU4YiNhCF59tlnB/cxjsiXdeuttwlxXL9+fXn/vfdzxfjHmv4Mfmz53/Bv+I+l/jH6O7zoLzFxgXMcVasuU6dNSaN/M9L/h6J/92d/zftujlx++RWqj0ePHi1NzmqSqf5llHXDhg21LvV4U+hxzyO0v2679daoHn8fehz6vw2W3/2GaKZevWBX/HtAGltm8qQp0rffzdre9OmwKxBVpUZdLrD/jP8OL/5zhAcips1q9HdA+UOmVfM+OMnq+Zfxn/Gf1y0Z6T+jv9zPf5EcR15Q6JEy1jm9dFy9+4cDyuK+b3HoWZsHMEIgl/UafqgPCrcjQkcb1j/BMzj3DwXP+hb1cjbCZ8RRc0QcsYxHxNHxtRBxhPMw/EW/LZa27dpI6t4UOFvukJ49emj9efPmaeTMX3/+pb/dH+QAKFRQbke9rl27aL98/6dO+0Tuuftu2bgxmrySz5REAutX/vtfqY8EkgScHv7fwf9HWHp2++23a3sfIi9RvbonyGY4dk5tTMeOwLEzAo6dZnruBigOUUGrpUlTGJQoL774opx51lluWEL4H4XrdBzVPLYmlpxNTDP+zJ3UunVbdCFVPsRXxxNOQG6l0Pi/+dab8sADD0jRokXlhx++BxRiGcU7KYOOZ0X/2UZeoD/3mnjbGNG/wSeZGP6N/qKC1+SPk8yKB6IlJP/zm/7PafnnIo4ulOpYxjV16icK/lDkz/70r+tLxvbXzTfeJFM/maoffCZiObnu95GJ/v0NerxN69baHJNt161zgooHamuO/1tvvikPPvCgbiLyPfT4luQt0tjbFSNGapQSacfrX80j2cTZFS/RrjjzLBCY5zJWw7npP0VXVtl/Yfx7+zM32t+OTGz8jf5N//qJn5eMejT9a/ZHbre/kpIWMgQInnin851QD3S6txpU4SMAGtZkXDwuBpZk5LY+hD+8QMpPX3CNy5viNZg6qBCpi5Mchq+Oo3PhOMKrjB8/QY4/7rgM+98W+QiYiPpS7Eby4IMPy4YN67H06nxJ3pQsjRo3kmuuvlqKIm8B1/QzVJv9//CDD7FbWT3FwF9//SUtsVRr586dUqtOLel6eVeJLxCvUTszvp6hX+l69bo6y/p/C/IT0EAsWbKkzJw5U5exMYE234Hv9smUTzQHgb5cCP8nIRpo5+6d8tTgp3RXNuJFbTrWwVi/+NJoeeKJwTBAE2TS5Mlpxn/Dpk3yf8gFxfL0f56G8Zk2Cehk1NeIJrT14w8/IslmsKtLCH5Oj7++rMFX+lfCyGH+M/wDA0Z/Rn+qCkEIxn8Z6l9Oep2tQUTlXfsjcQGWql10oZQsXlJ69OwhKSkpcuRRR2Jp1zFwvpyKj06F9tv//enfwBRTkRqVKYKcRMvlfCwhJ6z77r1PLu9y+X7tr03Jm+RfpwZ6HMva27bFR7MQ/idPngo9jggiXJv//Xz5a+VfckHLC2AqpMIZNhVOseohmeZe56STTlLbh3ZFG3yEyy32n74d+2b8ByQAESZ/9st/zuGZd+UP6Tw3zb+M/xzbmfwhJZj8yYvyV3McUYdqoQLRz1KUNMG14CYPvO2NEzUqcEGzs+tN3Ard1x+4rmGJwXV34F82Q0EMswN1+LiWHILvchy1QBeR2BnLqJhMOiP4119/vXw6/VM1qF5/7TUZNOhxeenll+BAqSkfj/0Yy9gKRvrPXEBY9qfh20/D8GL/77r7LizP+kAqH10FcMZKCTh0GJnDMgWGWI0aNeT42rWypP/MecR32Lt3DxxdlyGx9f2K2Nmz52oeIw7ojK+/lgrlyyn8MP7PQD4jJs6+F5FRXa68Cvfxju41tQ1GIjHiqEYNLFVD0my9rWPuxv+c5ufInyv+BB5rwcn0oibtZv/XYIneI488JpOQF4kPzZ4zR0qXKrkP/Jwef75AuP8GX4cEQ4RBPwz438bf6N/4P3b693Djv4VYot4eSaRV0Qd6FTFC0IipcnTlynLXnXfKeeedl6n8PZD+dbYYmmfbqpdFHnn0YXkVNkvJkqXky/99IcVLFKfaVqiZ4b95s2ay4q+VUgsR2C+Ohh6vVEnbW7NmjTz26KMyAbuyscyZPUcSFybBruii4L6a+bWUL1c+DXz+OP0M2BXrNiDi+l7kY+xyQPimf0z/mv0RfMEP5IQyGHguMLcj/J2X51+UIaZ/Tf/Gav5v9PfP+U93VSMivc2h51D6cZBM6tRJ80mLd1nCtd2V8F/edeKP4g67tTkxoU4kJwFxPR4Nq/RzT4Zb1OTL2Qjf7ap2jnbD5zjKCP6NNyPPEZJZnnrqqfL6669j15AOsgB5je6EodetW7dwl+U///mPvIDE0LXhCPp47Fjtf+s2beW3334Vbkt7fZ/e2db/Pdg696qrrpK5c+dJ2bJHYDnZJClftqzi/Qsk0mZCS47EzJmzpGw55FUi3kP4P/PMM2Xt2rWRfqXHP51BTzyJHEd0HGmOozC2EGX14YcycOBAQIjDkrQiuuUvd2NZhp1YUlL2Kp4Ifx52eKEBmx4+K4RbTA9fX15b8X/Ctf216JF3czP9Wf/T0h9HLjyiNv75W/4a/Rv9h/VPfuf/nbt2yysvvSQFkS+xJD6cbEbEctKviTIZO43u3r1bCiHi6J1335V6J5xAVIA90vL/gfSvPhT6sxk5GJs1bSpbt22Xnj27y4Db74A+hJtKDToFkEb/81HK34+8Hgd5Fi1SVI5Fzsatm7fI8j+WSwrXLrISynffzZM5c+bKtddgJzj8njULdgXsDV94jfr3DCxPY35H2kvdu111QPgAqyV9/03/B4iJHIhhj63IxciJxz/t7txof5v8x7iE7G8OXHhEjf7Tyr99ST2MrQjZR06M/m3+Y/M/ypTsk/9xC5Ecm1++9lFEoUsEH6kD4yMOSY/dS+G6Rimo/xguIn5Hc9c0EinUqtosbBMl1LSrn+aKqxO+lNXw/0COoxbNmyuICYg4Ou54LFXTNwlg84CXvOzyy9VI6ojt6x8b9BiSRzaSrVu3IT9RMexQdoRWZvf56I5tW2XDxk1yxBFHqCHFm/URqr171y4ZPny4nHteC/dFDtezuv/33X+/vIudS9jusGHDpEULwMJaM/7mjiqXYGcVvuO0T6bJMcccsw/8004/TTZgS93HBg2Si9BXLaGXZI6Cx31y7ImTMxz/qYhEGvLMs7q72t69eyU+Ph7L4qrLUUceqfiIL1hAFvz8S/qmYzL+oa4ZfIxIhLfdyLu/ISRlNf+Fmjb8G/6N/tJI5IAJQ0xi/BeSUfnA/vBDy49Ql116qezAUva2bdti59OnohLYV8KVg9G/dAx5+2vUqFEyePBgBG/Ey6fTpkkVbHhxsPYXl5Y/88wzsmzp77IHy9zikZogAXq80pGVoMe/kQLxBfHx7Cf5/of5zq7A+30CGNWPqRqBT5uQ9gd3Zt2ASOZBsCs6dLwo2+wfAFPHmO+/hx9C4UH3PzIAoYeN//In/3Gs04xtZPBxYuMfmRKlwVE+kr82/kb/aWjb+D+KgQPIv7jEhQvh4HZTR3rpSEopVPzpdh9QwwN3o+35M3ekso7HMheaL54c2ZrT2HqCP8EwoTGmSuKTqVD6OQ2fu6q1QI4jwh83YYLUQo4jnof7nyp7kdCxCUKt18kt/W6RHr16CnMBsVSsWAlf2MrgjP1xhRjkGv5TGpyMfEgPyaZNG+Vf//d/2sn/Ign2aafhPBv6/xK+ZD7++OP6Enfgy2KPnt0jcHhx2e/L5bzzEQaPwsigevVO0C9/Hv+7EK10MvrFXAijdFe0ZvuMP0PlnwgcR4xmcr124+5GEU6qYPx37toha9asBY4qaI6l119/Qx566CHsJHec5pNifX759PBjMf4G3/Bv9Oc41/gv5/WPyR+TP17+9OvfXybBBqldu7aMQ6QybYT09teh6N/de3bJuee2kJUrV0Lvt5Bhzw4PzJSovj4Y+tu9Z6esXr0Wy84rIgdTYXntjdflYejx47Csnx/bli1b5pbXBXbFCYiWCtt/u3fvkpNOPklS9vrdVptq30z/m/1zMPSXn+cf1n+T/17+m/1l9ldO+z+yQv4Eu6rR7YEBpEcADgA9of+HLgJEF7ljcE89SKiDo56qGyFcx1WXFD7LdvVpnaVofXeZ7gN3Rw85C//PP1bIOc2bA77fVY2Oo7T9HztmrPx7wADUSMUStBdQ/xw5/TSXC2gQoo8u6tDxgP0/6WQkncbXRH79a9e2naufhf1/9/33kD/gHn1HLp278647Fc9uSBwghq3/C7ufEM0PPfwwvhJ21i9/Hv+auLPDhbgrMnbcWKldqxYGDM+Gxv+lF1/SpWo1amCpGvMVYVwPdvx79OwpM2fMkI4dL5ZHHntUm9bHYzj+Bp9kEjv+M/wb/o3+jP/UMlA05Kz+z03y5+677pb3oMfpOKL+zcj+OhT9y11ib73tVtXPr7/+mjTGMntocwqcf2R/9OrVU776aoZcDD3+6GOPSDKWsDU+lbu1xsnDDz8onTu7qGavVhJ/SZILOyCvE8pYOMRq16r9j+BrJ2ib5gP7MzfRnxuvw5f/rP9kYRv/9PO/8PxH9RSFqMkfk7+mf1ReBDmOXMQI/QW041jUC4ZQZx55NTUV59R4PIcWj6ewIRL5hCITB5xygZR6UXEnUlBXcyZFLqQ/yVn4uquadxzh69nxSOrswpu1N8Ld0K7q0lWW/7lCTjqpvrz7zjt44QJy2WWXyPfff49ElxfK4CcfP2D/W7VqJYsXL0b9djIYu5IRe74wwodLupjfQLEG5B0K/idNHC/9+9+m793xoo4w5h7VdjLCf6fOF8tP83+Sc7GEjcvmwmXIkCHywvMvSLWE6jJ1ypTIO4bH333xfBJJwWsgx9FE1Dm48Z8/fz4Mys7snrzx2utqxIZhR89zdvyjcP2ZwQ/TP7ESHn9yRX7ifz/q0aONv43/ocnfvKz/onTvz4z+Y0H/zE3Yrl07WbJ4ibTFcfDgJ/+x/u3UqaP89NPPUqdOHfn444/dAP9D+2v+/B+gxy9FW6nI9Uhn1L/U/rv44s7y448/InobdsVzw6EjovbfM7Arnn/+eUlISJApU7G8HTZi2P7xlBe8oNoxh2L/GP/lXfs77djzl8mfWMif6DgY/g3/Zv+Y/nH+D5XIUOap+/H/OMcRnUCIMIkH5ugDcgYAH/eqnkqfhMWb/jrOI4UXudAriDzCmd7F5RRc9kFL7mEHQH1OqKX1chj+CkQcNcdSNRZNjl3rONmSvFWWI/x69tw5MuQ/Q5DLaKv294MP3sfyrhO1/2++8YYuQytQoIA8/fTTcsEFF2gb7NeePSn4IvcF8glUhSPqeO3XM0OekeEvPCcFkRdgyDNDENrdAvXj5OeffpI7seNaa2xdf9211+LSoeH/yy+/lN69ewPmHrTRGrkRBiMXQUG0nTH+X3nxZRn0+CB91yeffFLaw0gl/mdjd5Sre/WSnbt2Sr+b+wp3kcto/F9kxBGWqtWseaxMDHZIC0ZY21y8eBFyO5WTcuWY90lHVGZiB7e+aHPTls3SqEEjefOtN3GPdBL78SeBx5L+DL7h3+iPoiM28t/4z/gvJ/lvEHYWPePMM+Sss86UAgWgp6F/Nm9JxhLzJ7Dr6nuqEoc+O1Rann/+39K/Tq/GI2H1t9IFH7xYBj32mPCDUkb2Vyo+WnW+9BJZvWq13HffffighGX7MB2WLlkiZbC5Rtmy5QItnipffz1T+vbtK5s3b5bGjRvJG29E9fjLL8OuQP4iliefHCzt27fFWRzsitnOrkC0dd9b+kmf6/poH03/m/2jhGD2l9mfbuLn5Mwhzn8ickQlD//krfmn2R9mf+Sk/ZEd/hc4jhLhbA2WaXFOn8JcPSEHEhkcfMmO6rrMwDcRqMA0PIsUR1ifT0bmQ0xV6M9dbf0beRD3ggs5DX8FIonObX4uwKfCkENmIhhzTGKtL4x34nsfU70aloHdJ02bnhXpfwq2ur8IxlhSUpL27DjkRkqoniBbt2/ViJ4tW5Oxg9otcl1vGErofzKMrZYtL9Ct7vlAVSSmLhhfQJb+vhQw4uS2f98mV1/dC3Lk0PB/+RWXY4eyef51kY8Kb4xxIf7p9GMPKlepLJ99Ok3PmW/pqqu6SWJiIm9qssySJUrKwl8Xon6qNGzUSPMbcccXjn/q3hRp1aa17spClyF3SNu6bZtGRDG/E0vpMmU01wHHsHvP7jLr61lSu04tOJDKAj8LZcOG9VqvMrYbfu+9d6VChYqsSh8ZX8+V4MKh9p/PR5rhCfrt+58X6M/6b+OvGDD6V4Fg/H9o8t/kX96S/w0bNtQPUSVLlZIasBe4Q9nSJUuhU7eqGOiEqNxHsIxcx/Vv6F+v/2648XqZNu1TfMApL5//b7oUKVwY7VPZOm0ZiBvZvmO7NDilAa6myoAB/8bOa1erbu/eozs++MyUOlg2dwR2SUuEHt8IPc4WjoYefx9L6sqXq+DeE9c2b9qku7kmJsGuQONVq1aR4sVLyK+//ga7IkUaNWooI0eOkpIlS+h7ePjaIK6418JbHKL9o3jSFoM2TP+b/RPYv2b/kbHIsbl3/mX8zzFCCQSiyT+zfxiTo3oNAiwv+F804ohODBoRpGQuQ2IfAqrWX/5e4CZ3HUR1djAF7iz3PC87IyCS+Ms/DeeERitpu0HLBKJeDj6ds/DpBDkXEUfcSYyF8LlNfHU4ixISamA3tPrStUsXJHcukubd2P9tePbp/zwtH37woZ473IgUgpF2OhJgDxhwh9RCImiHzTh81Vspt99+u3w7+1vZu8dtTV+8RAkse7sUETk3Y/v6YmlgHAz+r7n2Gvniiy9Cz2k3In9IhEceeRSMR9bhmKRKMnIdDRw4UGbOnKlGLG5IhfLlpUmTpnL/ffdL0WJF8Tx7E4f33KNfF7dv36Ew3PVI83pSFg6ib7DLCsd/9KjR8uzQobILXxhZCJ9GcudOl0ifPr2lFM5z0/irvI4h/Rl8RyOx4n/Dv+GfMsroTzlBZbzTY07+EzWU+U4zRnVzftH/Oc3/jMx54803ENG8XDGrf4DkGgkJcuONN0nbNojUUaT/Pf1L+2Xb9u3SGI6avfjoc0u/ftK7Tx/V5V7/h/XvmrVrNfqJQ8wd1Fpd0AqnqTJq1EgZOnSYRiDzHkvpUqWlU+dOqsdLl+KGICh4V5putP82Jm+UOwfeKV/DrtiGKG0Wboxx1llN5F7YFcVhV7hlINpBvZ/T+Df4ucv+tvE3/Wv6F6IwRvNf4z/jv3/Kfxpx5IwWEnIQsoId1ZjcmlFGLJrbCD9IcNw3jc4FV5QEg3O1J9w9ZQjc07fzt2lt8LNAYHTgHp/GL/egnuYt+KvgFFqFcO8yiL5hZE1h5CtS3GTQ/507dyGXwSI4mApJtWrVg7o533+O3qJFi6VY0aJSpWrVLMP/LkRs/bF8uWzZuk2qABfly5fL9+OvtBvhBUfGmY2/I/z8Rf/W/8Nb/tn42/hHlbfJP1pF+5P/69aukdVrVqNWnNRISMDHmmJZpn/RkOzcsUN24+NUSXyYUt7MxP56FsvinkOuw4QaNZC4+mMpXISRSXwkXj/+LF+xTLYmb5PKiCAqj49LB2P/0TmzZPFitFVUqlapwsbQTWLEF5znM/tP+2j63w+wYmJ/9G/jb/YfiYTTI02LopRDORGQkM0/A+QAJzb/Nv9DwBcHo3/JQayeU/I3DuHIqS4BdgBZgfMl3GvgJ87gbgBTp8KhxKVGvJdCwyC4pw4nXoHfh0kQQ48GtViTXWKb+EfJwYbojIJxYfAdLhU9iiliyfBPmmEx+jP+M/lj8tf0j+lfsz+cbfB37a8tW7bKOc2aSfLWzdiw4k1piB1Xzf4y+yswtPRAbJj9afa32d82/6BAsPmXzb/Sz79cxFHISeE0B0kFBEMfD/7Ew9ETqFbn8/GJapyG0Uf4J/ITJ/BGOeWjF/EncBClwFnEdl3jvKkVgiMOLEF0U36HvwXLx4YNGyopujCbePCFiMd5OvwXLFgQiSr7SZEibic2X8c/5THJ64Z/oz81/pQo8Mf4TydIJn9M/pr+oW6hcqFwUAERHANNcpjo38Ox/yNGjtbNNLr36CED77jDxt/oHzRAg5xyICjG/44q0tnfxI5+87b5DzBB5LgD8cIS+YkTm3/Y/MPmH55HwBD5bP6lOY4c2wd/0UFdEw4xwHXxaltGKkREg1M1+lOlhNM9qEcVhIBMPfIxyljNgqTClsLFMZR/NFKRlVkOI/i/YNvciy/uqAKXGFPPLvpPpBOP/JMW/4Kd275CDoGKel/vEa9Q9O4BdzD8R9Bh9Gf8Z/IHwkHDXSFSTP6a/nGaBjJSlTAVTagcRvr3cOz/7DmzhbvKtsJurEUKYYmaGho2/hEMGP2b/a/2t81/bP5n89+088+owUC1YfNPIOFwnX8nJiapl0IJAXjAajNVHHTg0KPhfBIkmCC7UeSaf0KrOUcGavEXYpRw4NI1mKh81Bee4zF9Mjh3xBdcw+3DCf4e7NL27TdImg1cEScsDjdAThr8uzsFChaQ0/71f1wgjHpaU58JUBk4oAz/Rn/GfyZ/TP6a/jH9a/aHmgjuj9lfamCZ/Qnz3OxvpQWPB29NH07zD04hrP8QjcCDjT9n7ofX/Nvo/x/wP7aWJ70ELfDEcZFjJKddeM419c5ZwTrBd2v3JC9ES/AZzzOiu+HaoZTSnEbR2tEzlWD8afADFCiWiQ/Dv9Gf8Z/JH5O/lIQspn+UG0z/OnII/zX7A9hwkiJKHmZ/qV1p9qfZ3/gg67VIWGw4Dwqv2PwjQIHNP4ABL0vN/jb7Oyo5zP5EcuzAcQRpEQ+jS9PtRCRqKiKAEGmkChcXcWT44j6Fxpqui2Z9Js5mIaGFo5SIdtQL6gZVNKJJz7MYfp3atdEs3zUwmvSU8INLDmjoL94P7xbxXwV33FuzjcyLBgcFVdI273/hqKcG3/APOsqQnIz+jP9M/pj8TatnTP/oAu60SEn3y/QvVEoetT9gfwajmb/sz1jbvwY/tvMPw7/hP5bzX6M/o7/spL+4pGCpmvevRNFN0osW5/SBGYttAlPgYKEfhMXXUX+S/+Eb41HXuvGGc6IwO7fbXi5yyd/SY1bBr127Dl8vg+LeQ2+ETvnb/dyPqY4K3DWO/sZ9Ch9myeCWu+H/hoCGTnnX/TT4mWBYEWT4zwQ7Rn+OwYz/vKDJ5BgSOqFTVjb5Q/Ft8jcTCWPyFwxi+icT6qDwYDlE+Zu0AI4jL4dwzCr7L9JojOxPgx8MquGfQgOM4fCRU/MfDy9W8y+Db/SvysD4P3/yf1JSIqRaQOSq953h7AROYAjgNmto0mXKQLcQWJW8N7Vx1RkNrBgqdLIwCkm/iEUEaFBV5WlUqPIxb7j/U/i1NeJIJDEpMSbwPQpi1X+D7zBg+I8N/xn9Gf0RA8Z/xn+x0P8mf3K3/PH2GexPvGj+sz+N/nI3/UWnHtkz/7Dxt/EnBsz+MfsnP9o/cUkLk7ASLXAWeWmnBO9+8PuSU+wR1xG4IbiGSxGVj5NUrHPjUjY+g8Ak/TrHVlx1XKfjCN6nuHiwEyKPyFZsIDvg16qDiCM0jxxOMYEf6/4b/NjSn+Hf8M/ohFjJP6M/oz+jP+O/3Cp/atWqq/Yf7M9ssf9M/pn8M/ln8i+3yr/snv+a/DP5l53yT5eqcZlZOPmXC0Z2QoeMx0Lnj7p6UBluIfh7cNQwNHiC6P/RtWqurkYL8SJLEGUUbpN3tHVfJRvg165TS2Ew4ojQchq+IiWG/Tf4nrgctdn489uH4+mc4D+jP6M/ir9YyX+jP6M/o7/cy38uByU+7CUmwXbMf/anyR+TPyZ/cq/8ye75p/G/8X++5n8mx+akms4V/QuO0gghnWYGP9RZFDh7FBtaPaioLOiu8hQPu+VmjnXoN0rFH7pueJvJtyM+Jt98NsAPGyaxgK+oIJpi1H+DH1v6M/wb/lWeGv/HRP4b/xn/Gf/lXvtDl6rBEExMTPSWZ76yP03+mPwx+ZN75Y9OWMGknOvmx/mvyR+TP9kpf+KwlIvtB1gOnShUXobTh0vZQInq9OEV/HCBRFEnEbW+PqJeIc2GpM0qATMyCcvTtKhXilcdw/ooCPcwr0YAswJ+/T34mhwbzy/EFy2NjMph+Pry2kf0IQb9N/iexgz/Rn+gBeN/ClcyA/543nDy2133l7NG/kZhGP8Z/xn/mfxJa//RcUQpFNlVLSKWTP6o7Iyg4e/ZvyZ/vY4z/WP6x/SP6Z+0+oc2b3gVinc7QFo4QzhyMPmbof9HI44oY4GoAFcOcforgr3IV2P10DqZ7OpHH8JzLHQFYec1Xue5OpJwht9uqRuvBwXX6FPRKjzHZdd08EL+itZz7R4s/FpBcmzmOGLJafix7r/B11GPGf0Z/g3/lGixkn9Gf0Z/Rn/Gf7lV/vjk2HQcZYf9Z/LP5J/JP5N/uVX+kTs5vc2u+a/JP5N/2Sn/NOIoDl6VFGhv57ThV2jmAWfuIvjk6NhRjw79cykSj3rqwVYPDgeHTzHjNaoj4bU+p9d4nW0FWdVxDFxH+gwycjuDgb+yAb5GHAFmZFe1HIbv8BK7/hv82NKf4d/wH0v5Z/Rn9Gf0Z/o3VvbXgeRP7dq11A7krmrZYf8dCH52258G3+SvyV+Tv7lV/pr8y17/Q36X/5ocGxrcLeWglyhdUZ+RXiMLeOcSL/A30ROvZ865xKt0D+Ee24qHkwmuT9cq7vhPS3qFNVE8TC4l8efujruNv/75Q4FfqzZ2VQO8xAVcQ8+Ss/Bj3X+DH1v6M/wb/mMp/4z+jP6M/mJnfxj/7Z//fMQRk2NryWL7z/C/f/w7S51mMeqxGP6juHAY0b+cpTgM5a35j9G/0b/pf9P/2eV/ieQ4UrGIiCGJ8/urUVzS2eIOlKIu0TN/46J6iniVtdK7dJzziHuvBW6loAbFsC9RkcwrWQ2/LpaqEcJCfNHi27k3TAv/l18WyLRp06RGjRrStl1bdCn/9J94jyX+Db7hP7fT36ZNm2XOnDny3XffyZq1a+TEevWlQYOTpd6J9Dl7+bdy0UebOmavtrF27Vk6oV08aNThFTkA7Gcm/TZs2Ae5s1P9eWL8e6p+C+vXrnQS5mj/kb17h/927d8sXX3wh387+VtauWSdlypSSGsfWlIs6XCQlS5bAeKhyoopSlbdrD+r/70uZPYf110jpMmVQ/1jU74D6JbUetUz6/m/bvkM++3SaLFq0SFasWCFFixaRWrVqS9u2beWII46AtIaGykT/jPlojGzYsEHhu3meeyn/any2UMFCcumll0rhwoXxy8HfAPqeBzqbBzpbs3Yd6PsE0HcDOfHEE1GDtdiCK/uDr1VRLS/p//T4z0j/51T/9+Lj2XvvfyDbtm7x6MYxiv/y5ctLu/btMh3/WTNnKY1Wq3qMXHbF5XgU4xayvz4a85Fs3LAx0rYf/7D8LQD6uOzSS5Q+XMUofP4Oj/9vixbLt998K4wG2rV7lyRUT5D27dtL5aOOdn6GdPAPVf4RXsRx5FMJ4A0yo3+jP2LM+M/kj2P99PyvvJtGlu+rf2Ip/wjb4NOipMz1JXP563AVaHev5PGY0b/Rv9p/6fRvLPjfRRwpcYJcuQxN/wscPnjByDtqgiISPQheaR73cNQgIhVaTIjN2zRq3Kn+jJ5GLrvnCAumja+vS9eyDr43TCLJF/Ee/rU8/OeeHy7PDHlG6tSpIx+PGZOv+u/RzqHyJX3/sxP/HqbB95jYl/4M/9nH/x7rmdHf4sWLpVv3q2TN6jUqw1Qm4CHW79uvn9zQp7dGTR5I/i1evEi6d+8hq1ev8iCdUESD/dBO7z59ItfJf3QcdOvWXdbA6eCgRarLLVofcCGp1OEE4AeCn1vlr+90Zvh3uiZ240/4iUkL5Ibrb4Aj5w+nyyIjIlK+XFkZPfolqQtni87Rof8YHXH99X3kjz9W+O4FxzgpV+4IefHFF+WEuvWijB6099lnn8mDDzwgK1euDD1HakiVLl26yL333ovTzPXvSSeeJLv27PTkEmrDn7q2Jk6cIDWPPU7hk866d+8OulztK0WOffv2Qz+uz1b964Hl5vHPKfn722+/Sds2bTxKgqMbM/6gg5KO5/T218aNm+WxxwfJRx9+hDFNlWNrHCuTJk10dEBbDcgl/9evD/rYBfrwhRd5M12ZOHGi1KxZM3guY/vrueefk6HDhkvKnj0qC10TcVK4SCF54vEnpFWrC9LAP1T5x/b4arS52JBGHCkqMqd/z3/uhfAwuxbqvxI80yWweHvS/Qr1wdXSKng+N8ifnKK/ABX72L8GP7b6x/Bv+M+u+a/neYpKXyhmWZzeyFj+55f5v+upUxX+3PrvMJEV468RR5yoxKXiS3cccxSRdKhkw36s4Bw39KMo4QcUGZCfU0ruQU+ZwVtSSbvnIw955R7Uzw74tWmYgFKSFjD5Ysbwn3/+eRkyZAiMmLpwHH2Ur/pPw0oLcJxZ/4OBxiH/jb/138Y/M/pfvWqNXHjRhbJh3Xo5plo1ueiijlLtmKoy5uOx8uWXX+hjjz76iHS8uJOTa14WgpfC8o+T8g4Xtpd16zdIdbTTAVEq1apXkzEffSRffvWVyp9HH35UOnXqqDxG59KFF3aQ9evXa72OqE/4Y8Z8HMCNEwf3YsDN2/I3L/Df0KFDZdiwYYh+qKPjWPHIo2T2t9/IO+++qzqs7gkn6FhSb1FGDnsW9Z9j/doY6w5SqWIlrf/2u+9Bf6ZK3bonCKM/AstM6YgOge5wUO7avUcn7YwwqndCPWGUxqxZszTarEvXK/erf4cOfVZWrlpN30GU/tg6fn//3Tz59bdFSqdffTVDKlSsIKtXgc7wfus3gM6qVpOOHTuAzqqDzsaAzr4M6PtRubjjxUqjJv+zV/8lwUHZHnxfvHhxRO60A/69CatDIZUrV5Hrrr0mjf0xZfIkeeDBh2T9unWuEv7ScTRxyiT3NMaehXLimaHDZA3GnAah3nSWod7/bt53cFb/RlKRGTO+kgoVKoBuAJ+vENT34z9+4iS5tf8t+lyLFudKm7btZOuWLTJixAuyfPkfUrRwEYVfpUoVffZQ5Z8DSLhxUrsudlUDfH7Y8/Dzk/2ZF+Rf+vE3/Oef+Y/Rn9m/KsghY23+l/H83+QfKARs8nf0bxx3VfPLm2lHqOiEE4mCh/aF3gsMEbU1UCkVGj8ceOcnOeHwcPiSw7aJvqEfPhI0n2FCbg5edsDXHEeAo7t2EKBC5Hu7QvjDX3hBnvnPEKkLJ9OYjz/mq+Sb/sca/wY/tvRv+M8c/yNHjpSnn3pKSpYprV/zq1WpqrJub0qKXIVJ/Jy5c3RJz1vvvL1f+TciaKd0abQDZ9ExVavo8lBJ2StXoJ15c+diCVoDeeftt1X+jBw1Qp4a/LSULl0KDokPpfIxx6j8k70p0uWqrjIX9Rue0lDeeuvNPC9/8wL9zfz2W404a9+mrY6/l//333+fvPnWW1QZWOo1V0qU4JK1OCzf+QYRPGukTbs2uEUN4sqDD9wvb775luqW2RjD0oggYf85k7+gVStZumSJNGrUWEaMHCGlguVsWaX/LrnkEpn/ww/SpEkTeXH0KIU7GnAGP0U6Ky0fKl1WVfrbC7q8EnQ5F/TdEEsj33znnWzTv3lh/LPT/gj3PykxUR3G1ROqydQpU5Vo9jf+69evk9NOP13p78J27RHNVk5efuUVRJPBcQTnzqHYX50j9NFURoE+wvZP+v6f1/J8Wb50mTRrdra8MGKE8gRtM0bKtbzgAtmxfbtcc8210v+2/mgnDvTs5OjByr+w/VeHqQTwMomI4ssO+y+Mf9dnYjyt/Ze+/57/U/OB/Wv9z1z/kwH3x382/nl//mf0b/RPuU+ZbvLfS7ws1H/Yrt7bv2roek91BOE48R+oCD5StAKGJFCyoRFyVfQhhg+Hho/PwEpg4jYdzAiQoNXQl7LILZz8Hfh+VzX0D40HrfEQgv/8c4g4eoYRR1iqBsdR+Evxlq1b5X+ffy4/zv9Rv9zySx3DvNu1a+fyBGiTrv9/rPhTJowfr7lNmjQ5S2bOnClfz5gpyVs2yQn4uty6dSuEo5dyrwH4S5b8DgNyCiaax0jrNq2DzvM1UwFrg7z//vtSslQpueLyy/UZ9n8b3udzvs+PeB9ELFQoX1FqHof3adsGYeRFXNuKVMFSij/wPhPxPnWkYcNG8uqr/wXMpYiqqCZ9bugt8fEFsx3/btBiN/4GH8SAfDmx4r/cjP9WrdrIYuTx6NWzpwy4fUAa/psMvuzbt69emz59ulQ+unKm8qcNlp/8hq/5vXr1kgH/RjsB//HhyZPQTr+bg3Y+06iC1q1ay+Ili6RHz15y+wDUD8SS1p88OQ3coytXjvDo35F/uRn/OSH//0n/GZlz++2369h9Pv1zOary0eGh1etu7DDg0H/86ODqx0FGT5ejjz4a1+NkxtdfSk+MtR/fGgk10uif8PhrpUPUf/OQm+vyyy/Do3EyetQoadK0iTbTunVrRJmAvnv1kAED2I+o/ps8dZL0vbmfPjMdS+gqV6msz+ifQ4SvtkIu1f//ZPyJiwhr4uSf8l9i4gLnOELU19RpUw5o/2zbtk1uve02lU+N4XAc/dKL8uQTT8ixcBxNmjTJjZe+oKM/Nw64HJI/fOl5380BfVyh9UePHi1NzgJ9hOyfaCdFtsK+aNiwodalY73p2We75oL+33brrTIeNk79+vXVPuGzhyr/FF4Avw43L8EFZ58pWPxEo/yYqHeC7gTww12LVth//03/mf53VAQiIjXzkAn9O5oy+jP+M/lDXgg4Rk/+qf6LtGb8l2/kTyTHkScUPYb0MdnIqx8VrkpU9FzxDmvzgF98xv1Q5a82AC5EiE4b1j9aK2IkBJf8HT1mAfzaSDzKEok40oY9FNzACz7PiCMsVeOyNhr/vkczZ34tN914s2zZmuy


Besked fra: JackJazz
Posteringsdato: 06.Jan.2020 kl. 14:11
Kort svar:
Prøv med koden:
=HVIS((B9=1;(STATUS!B118/STATUS!B120);#I/T)
 
/JackJazz
 


Besked fra: Skorpen
Posteringsdato: 07.Jan.2020 kl. 10:24
Hej JackJazz.

Det løste desværre ikke mit problem - men tak for buddet og indsatsen under alle omstændigheder.

Hvis jeg indsætter kode som du foreslår, skrives der #I/T i cellen i tabellen. Jeg har netop brug for en tom/blank celle i tabellen (hvorfor jeg bruger " " i min kode). Desværre opfatter mit kurvediagram ikke dette som blankt, men returnerer summen 0 hvilket så fremgår i diagrammet.


Besked fra: Hans K.
Posteringsdato: 07.Jan.2020 kl. 10:57
I stedet for en masse skriveri frem og tilbage ville det gøre det lettere at hjælpe dig, hvis du /topic662.html - uploader en fil med eksempeldata. Se tredje punkt øverst til venstre under Navigation.


Besked fra: JackJazz
Posteringsdato: 07.Jan.2020 kl. 11:33

@Skorpen

Hvorfor skal du bruge en tom/blank celle? Hvis det bare er for et syns skyld, så kan det klares med Betinget formatering.
 
Ellers er jeg enig med Hans K: Prøv at /topic662.html - uploade et eksempel, så det er nemmere for os at hjælpe dig.
 
/JackJazz


Besked fra: Skorpen
Posteringsdato: 08.Jan.2020 kl. 11:21
@JackJazz og @Hans K

OK - jeg prøver at /topic662.html - uploade mit Excelark her.
(Under forudsætning at I ikke skriger af grin... :-) Det er meget håndholdt det hele)

uploads/2599/Timepriser_2020_MASTER_3.xlsx" rel="nofollow - uploads/2599/Timepriser_2020_MASTER_3.xlsx

Forklaring:
Hver måned udfylder jeg 3 simple tal for en kunde på fanen STATUS.
De tal trækkes med over på fanen for den enkelte kunde. I dette tilfælde fanen AMG
Resultatet skulle gerne give, at jeg kan printe (PDF) det gråt markerede område som en rapport til mine kollegaer. 1 side pr. kunde som en samlet PDF.

Heraf er det vigtigt, at både celler i tabeller samt markeringer på diagrammer er tomme, hvis vi ikke er kommet så langt på kalenderåret. Hvis vi fx er i april, skal maj og fremefter fremstå blanke. Ja, det er for syns skyld, men stadig vigtigt.

Måneden "aktiveres" ved at notere et 1-tal i Kolonne B.

Mit problem består så I hvorfor diagrammet (Timepris pr. løbende måned 2020) viser de ej-aktive måneder som 0 og placerer en markering med det resultat. I stedet for slet ikke at placere en markering. Det trækkes fra Kolonne M (som igen trækker fra Kolonne Z - ja, det er håndholdt, men jeg har haft mange desperate forsøg frem og tilbage).
Jeg har som nævnt forsøgt mig med koden (" ") for at give et blankt resultat.
Se fx månederne november og december, som endnu ikke er aktiverede - men fremgår i diagrammet som 0,00 med røde markeringer.

Diagrammet er et helt almindeligt kurvediagram med skjulte linjer og indbygget mærke.

Det sjove er, at jeg har fået det til at virke på den blå stiplede linje (Gns. 2020) som trækker på data fra Kolonne AA. Den markering "vokser fremad" efterhånden som jeg aktiverer månederne i Kolonne B.

Prøv gerne ved selvsyn at ændre i Kolonne B og se hvad jeg mener.

På sigt skal jeg have ændret koden i Kolonne Z så den returnerer (#I/T) ved udregninger som ikke giver mening (nul divideret med nul fx). Så langt er jeg dog ikke endnu. Lige nu er det som nævnt visningen på diagrammet som er det store problem for mig.

Igen: Jeg bruger Excel på Mac og ikke PC, hvis det gør en forskel.

Håber I har gode idéer... :-)


Besked fra: Skovgaard
Posteringsdato: 08.Jan.2020 kl. 11:45
@Skorpen,

Som det er nævnt her i tråden, kan conditional format anvendes, se vedhæftede eksempel.

uploads/2506/Timepriser_2020_MASTER_3_Skovgaard.xlsx" rel="nofollow - uploads/2506/Timepriser_2020_MASTER_3_Skovgaard.xlsx

/Skovgaard


Besked fra: Skorpen
Posteringsdato: 08.Jan.2020 kl. 12:15
@Skovgaard.

Fantastisk!! Umiddelbart ser det ud til at løse mit problem. 1.000 tak for hjælpen!!



Print side | Luk vindue